Skip to main content
Log in

Survey on High-Temperature Superconducting Transformer Windings Design

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Utilization of superconducting equipment increases every day due to availability of the HTS tapes with reasonable prices, commercially. Since 1997, many high-temperature superconducting (HTS) transformers have been designed and fabricated. In this paper, all the different developments of HTS transformer windings since 1997 will be reviewed. Additionally, the advantages and disadvantages of the application of the two main winding types (the pancake and the layer) in the HTS transformer will be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kalsi, S.S.: Application of High Temperature Superconductors to Electric Power Equipment. IEEE Press, Wiley (2011)

  2. A. Moradnouri, M. Vakilian, A. Hekmati, M. Fardmanesh, “The impact of multilayered flux diverters on critical current in HTS transformer windings,” 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 2019, pp. 481485

  3. Kim, S.H., et al.: Analysis of perpendicular magnetic fields on a 1 MVA HTS transformer windings with flux diverters. IEEE Trans. Appl. Supercond. 14(2), 932–935 (2004)

    ADS  Google Scholar 

  4. Xing, Y.Q., et al.: Influence of flux diverter on magnetic field distribution for HTS transformer windings. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  5. Xiao, L., et al.: Development of the World’s first HTS power substation. IEEE Trans. Appl. Supercond. 22(3), 1–4 (2012)

    MathSciNet  Google Scholar 

  6. Hekmati, A., Vakilian, M., Fardmanesh, M.: Flux-based modeling of inductive shield-type high-temperature superconducting fault current limiter for Power networks. IEEE Trans. Appl. Supercond. 21(4), 3458–3464 (2011)

    ADS  Google Scholar 

  7. Ghabeli, A., Yazdani-Asrami, M., Besmi, M.R., Gholamian, S.A.: Optimization of distributive ratios of apportioned winding configuration in HTS Power transformers for hysteresis loss and leakage flux reduction. J. Supercond. Nov. Magn. 28, 3463–3479 (2015)

    Google Scholar 

  8. J. Y. Zhang et al, “Manufacture and tests of a Bi2223/YBCO Coil for a 1-MJ/0.5-MVA fault current limiter-magnetic energy storage system,” J. Supercond. Nov. Magn., 2018

  9. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: HTS transformer windings design using distributive ratios for minimization of short circuit forces. J. Supercond. Nov. Magn. 32(2), 151–158 (2019)

    Google Scholar 

  10. Dai, S., Ma, T., Qiu, Q., Zhu, Z., Teng, Y., Hu, L.: Development of a 1250-kVA superconducting transformer and its demonstration at the superconducting substation. IEEE Trans. Appl. Supercond. 26(1), 1–7 (2016)

    Google Scholar 

  11. Jaroszynski, L., Wojtasiewicz, G., Janowski, T.: Considerations of 2G HTS transformer temperature during short circuit. IEEE Trans. Appl. Supercond. 28(4), 1–5 (2018)

    Google Scholar 

  12. Vysotsky, V.S., et al.: Development and test results of HTS windings for superconducting transformer with 1 MVA rated power. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    MathSciNet  Google Scholar 

  13. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: Multi-segment winding application for axial short circuit force reduction under tap changer operation in HTS transformers. J. Supercond. Nov. Magn. 32(10), 3171–3182 (2019)

    Google Scholar 

  14. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: Optimal design of flux diverter using genetic algorithm for axial short circuit force reduction in HTS transformers. IEEE Trans. Appl. Supercond. 30(1), 1–8 (2020)

    Google Scholar 

  15. Hu, D., et al.: Characteristics comparison between HTS air core and partial core transformers. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  16. Iwakuma, M., et al.: Development of a 3Ø-66/6.9 kV-2 MVA REBCO superconducting transformer. IEEE Trans. Appl. Supercond. 25(3), 1–6 (2015)

    Google Scholar 

  17. Funaki, K., et al.: Development of a 22kV/6.9kV single-phase model for a 3 MVA HTS Power transformer. IEEE Trans. Appl. Supercond. 11(1), 1578–1581 (2001)

    ADS  Google Scholar 

  18. Glasson, N., et al.: Test results and conclusions from a 1 MVA superconducting transformer featuring 2G HTS Roebel cable. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    Google Scholar 

  19. S. Mehta, “US effort on HTS power transformers,” Elsevier, Physica C, vol. 471, pp. 1364–1366, 2011

  20. Xiao, L., Lin, L.: Recent progress of power application of superconductor in China. IEEE Trans. Appl. Supercond. 17(2), 2355–2360 (2007)

    ADS  Google Scholar 

  21. M. P. Staines, Z. Jiang, N. Glasson, R. G. Buckley, and M. Pannu, “High-temperature superconducting (HTS) transformers for power grid applications,” Superconductors in the Power Grid: Materials and Applications, Woodhead Publishing Series in Energy, C. Rey, Ed. Elsevier, 2015, Ch. 12

  22. Wang, Y., et al.: Development of a 630 kVA three-phase HTS transformer with amorphous alloy cores. IEEE Trans. Appl. Supercond. 17(2), 2051–2054 (2007)

    ADS  MathSciNet  Google Scholar 

  23. Wang, Y., et al.: Development of a 45 kVA single-phase model HTS transformer. IEEE Trans. Appl. Supercond. 16(2), 1477–1480 (2006)

    ADS  Google Scholar 

  24. Funaki, K., et al.: Preliminary tests of a 500 kVA-class oxide superconducting transformer cooled by subcooled nitrogen. IEEE Trans. Appl. Supercond. 7(2), (1997)

  25. K. Funaki, et al., “ Development of a 500 kVA-class oxide-superconducting power transformer operated at liquid-nitrogen temperature” , Elsevier, Cryogenics, vol.38, no.2, pp.211–220, 1998

  26. H. Zueger, “630 kVA high temperature superconducting transformer”, Elsevier, Cryogenics, vol.38, no.11, pp. 1169–1172

  27. Kamijo, H., et al.: Fabrication of winding model of high-T/sub c/ superconducting transformer for railway rolling stock. IEEE Trans. Appl. Supercond. 13(2), 2337–2340 (2003)

    ADS  Google Scholar 

  28. Tixador, P., Donnier-Valentin, G., Maher, E.: Design and construction of a 41 kVA bi/Y transformer. IEEE Trans. Appl. Supercond. 13(2), 2331–2336 (2003)

    ADS  Google Scholar 

  29. Tixador, P., Cointe, Y., Trollier, T., Maher, E., Usoskin, A.: Tests of a bi/Y transformer. IEEE Trans. Appl. Supercond. 15(2), 1847–1850 (2005)

    ADS  Google Scholar 

  30. T. Bohno, et al.,“Development of 66kV/6.9kV 2 MVA prototype HTS power transformer”, Elsevier, Physica C, Vol. 426–431, pp.1402–1407, 2005

  31. Kamijo, H., et al.: Fabrication of inner secondary winding of high-T/sub C/ superconducting traction transformer for railway rolling stock. IEEE Trans. Appl. Supercond. 15(2), 1875–1878 (2005)

    ADS  Google Scholar 

  32. Formisano, A., et al.: Performance evaluation for a HTS transformer. IEEE Trans. Appl. Supercond. 16(2), 1501–1504 (2006)

    ADS  MathSciNet  Google Scholar 

  33. Kotari, M., et al.: Development of 2 MVA class superconducting fault current limiting transformer (SFCLT) with YBCO coated conductors. J. Phys. Conf. Ser. 234, 032070 (2010)

    Google Scholar 

  34. Berger, A., Noe, M., Kudymow, A.: Test results of 60 kVA current limiting transformer with full recovery under load. IEEE Trans. Appl. Supercond. 21(3), 1384–1387 (2011)

    ADS  Google Scholar 

  35. Iwakuma, M., et al.: Development of a REBCO superconducting transformer with current limiting function. IEEE Trans. Appl. Supercond. 21(3), 1405–1408 (2011)

    ADS  Google Scholar 

  36. Kojima, H., et al.: Current limiting and recovery characteristics of 2 MVA class superconducting fault current limiting transformer (SFCLT). IEEE Trans. Appl. Supercond. 21(3), 1401–1404 (2011)

    ADS  MathSciNet  Google Scholar 

  37. Hayakawa, N., et al.: Analysis of current limiting and recovery characteristics of superconducting fault current limiting transformer (SFCLT) with YBCO coated conductors. IEEE Trans. Appl. Supercond. 21(3), 1422–1425 (2011)

    ADS  Google Scholar 

  38. Lapthorn, A.C., Chew, I., Enright, W.G., Bodger, P.S.: HTS transformer: construction details, test results, and noted failure mechanisms. IEEE Trans. Appl. Supercond. 26(1), 394–399 (2011)

    Google Scholar 

  39. Shi, Y., et al.: Manufacture and measurement of a fifty kilo-ampere superconducting transformer for the ASIPP conductor test facility. IEEE Trans. Appl. Supercond. 22(2), (2012)

  40. Wojtasiewicz, G., et al.: Tests and performance analysis of 2G HTS transformer. IEEE Trans. Appl. Supercond. 23(3), (2012)

  41. Glasson, N.D., Staines, M.P., Jiang, Z., Allpress, N.S.: Verification testing for a 1 MVA 3-phase demonstration transformer using 2G-HTS Roebel cable. IEEE Trans. Appl. Supercond. 23(3), (2013)

  42. Iwakuma, M., et al.: Development of REBCO superconducting transformers with a current limiting function. IEEE Trans. Appl. Supercond. 23(3), (2013)

  43. Lapthorn, A., Bodger, P., Enright, W.: 15-kVA high-temperature superconducting partial-core transformer—part 1: transformer modeling. IEEE Trans. Power Del. 28(1), 1–8 (2013)

    Google Scholar 

  44. Lapthorn, A., Bodger, P., Enright, W.: A 15-kVA high-temperature superconducting partial-core transformer—part II: construction details and experimental testing. IEEE Trans. Power Del. 28(1), 253–260 (2013)

    Google Scholar 

  45. Ohtsubo, Y., et al.: Development of REBCO superconducting transformers with a current limiting function—fabrication and tests of 6.9 kV-400 kVA transformers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)

    Google Scholar 

  46. Komarzyniec, G.: 14 kVA superconducting transformer with (RE)BCO windings. International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Appl. Supercond. (ELMECO & AoS), Conf. (2017)

  47. Yazdani-Asrami, M., Staines, M., Sidorov, G., Davies, M., Bailey, J., Allpress, N., Glasson, N., Gholamian, S.: Fault current limiting HTS transformer with extended fault withstand time. Supercond. Sci. Technol. 32, 035006 (2019)

    ADS  Google Scholar 

  48. Iwakuma, M., et al.: AC loss properties of a 1 MVA single-phase HTS power transformer. IEEE Trans. Appl. Supercond. 11(1), 1482–1485 (2001)

    ADS  Google Scholar 

  49. Perez, B., et al.: AC losses in a toroidal superconducting transformer. IEEE Trans. Appl. Supercond. 13(2), 2341–2343 (2003)

    ADS  Google Scholar 

  50. Morandi, A., et al.: Superconducting transformers: key design aspects for power applications. J. Phys. Conf. Ser. 97, 012318 (2008)

    Google Scholar 

  51. Yamaguchi, H., Kataoka, T., Sato, Y.: Analysis of a 3-phase air-core superconducting power transformer. IEEE Trans. Appl. Supercond. 9(2), 1300–1303 (1999)

    ADS  Google Scholar 

  52. Nagasawa, T., Yamaguchi, M., Fukui, S.: Conceptual design of 100 MVA high temperature superconducting auto-transformers. IEEE Trans. Appl. Supercond. 13(2), 2306–2309 (2003)

    ADS  Google Scholar 

  53. Cheon, H.G., Choi, J.H., Kim, K.J., Lee, H.G., Kim, S.H.: The barrier effect on breakdown for design of 154 kV class HTS transformer. IEEE Trans. Appl. Supercond. 21(3), 1434–1437 (2011)

    ADS  Google Scholar 

  54. Sun, R.M., Jin, J.X., Chen, X.Y., Tang, C.L., Zhu, Y.P.: Critical current and cooling favored structure design and electromagnetic analysis of 1 MVA HTS power transformer. IEEE Trans. Appl. Supercond. 24(5), (2014)

  55. Fukumoto, Y., Tomita, M., Iwakuma, M.: Current sharing properties of superconducting parallel conductors in rectifier transformers for railway electrification system. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    Google Scholar 

  56. Choi, K.D., et al.: Test of a high Tc superconducting Power transformer. IEEE Trans. Appl. Supercond. 10(1), 853–856 (2000)

    ADS  MathSciNet  Google Scholar 

  57. JK Sykulski et al. “The design, construction and operation of high temperature superconducting transformer – practical consideration”, CIGRE, 21,rue d’Artois, F-75008 Paris, 2000

  58. Lee, H.J., et al.: Test and characteristic analysis of an HTS power transformer. IEEE Trans. Appl. Supercond. 11(1), 1486–1489 (2001)

    ADS  MathSciNet  Google Scholar 

  59. Lee, S., et al.: Test results of a three phase HTS transformer with double pancake windings. IEEE Trans. Appl. Supercond. 12(1), 808–811 (2002)

    ADS  Google Scholar 

  60. Kim, W.S., Hahn, S.Y., Choi, K.D., Joo, H.G., Hong, K.W.: Design of a 1 MVA high Tc superconducting transformer. IEEE Trans. Appl. Supercond. 13(2), 2291–2293 (2003)

    ADS  Google Scholar 

  61. Kim, W.S., et al.: Characteristic test of a 1 MVA single phase HTS transformer with pancake windings. IEEE Trans. Appl. Supercond. 14(2), 904–907 (2004)

    ADS  Google Scholar 

  62. Kim, S.H., et al.: Characteristic tests of a 1 MVA single phase HTS transformer with concentrically arranged windings. IEEE Trans. Appl. Supercond. 15(2), 2214–2217 (2005)

    ADS  Google Scholar 

  63. Song, M., Tang, Y., Chen, N., Li, Z., Zhou, Y.: Theoretical analysis and experiment research of high temperature superconducting air-core transformer. Intern. Conf. Elec. Mach. Sys., Conf. Paper, IEEE. (2008)

  64. Hu, D.Y., Sheng, J., Li, Z.Y., Hong, Z.Y., Jin, Z.J.: Experimental and numerical study on an HTS air core transformer with pancake structure. IEEE Intern. Conf. Appl. Supercond. Electro. Dev. (ASEMD). (2015)

  65. Liang, L., Yan, Z., Nie, X., Hu, Y., Luo, K., Wang, Y.: Experiment of current limiting behavior based on air-core superconducting transformer and inductor-capacitor series resonant limiter. IEEE Trans. Appl. Supercond. 29(2), 1–4 (2019)

    Google Scholar 

  66. Al-Mosawi, M.K., Beduz, C., Yang, Y., Webb, M., Power, A.: The effect of flux diverters on AC losses of a 10 kVA high temperature superconducting demonstrator transformer. IEEE Trans. Appl. Supercond. 11(1), 2800–2803 (2001)

    ADS  Google Scholar 

  67. Joung, J.M., Baek, S.M., Han, C.S., Kim, S.H.: Electrical insulation characteristics in the simulated electrode system of HTS double pancake coil. IEEE Trans. Appl. Supercond. 13(2), 2321–2324 (2003)

    ADS  Google Scholar 

  68. Baek, S.M., Joung, J.M., Lee, J.H., Kim, S.H.: Electrical breakdown properties of liquid nitrogen for electrical insulation design of pancake coil type HTS transformer. IEEE Trans. Appl. Supercond. 13(2), 2317–2320 (2003)

    ADS  Google Scholar 

  69. Joung, J.M., Baek, S.M., Kim, S.H.: Manufacturing and test of model double-pancake coils of HTS transformer for cryogenic insulation design. IEEE Trans. Appl. Supercond. 14(2), 928–931 (2004)

    ADS  Google Scholar 

  70. Baek, S.M., Kwag, D.S., Kim, H.J., Yun, M.S., Kim, S.H.: Insulation test of reciprocal and concentric winding arrangement for a HTS transformer. IEEE Trans. Appl. Supercond. 15(2), 1863–1866 (2005)

    ADS  Google Scholar 

  71. Hu, D., Sheng, J., Ma, J., Yao, L., Li, Z.Y., Hong, Z., Jin, Z.: Characteristic tests and electromagnetic analysis of an HTS partial core transformer. IEEE Trans. Appl. Supercond. 26(4), 1–5 (2015)

    Google Scholar 

  72. Park, C.B., et al.: Optimization of 1 MVA high T/sub C/superconducting transformer windings. IEEE Trans. Appl. Supercond. 13(2), 2294–2297 (2003)

    ADS  Google Scholar 

  73. Kim, J.T., Kim, W.S., Kim, S.H., Choi, K.D., Hong, G.W., Joo, H.G., Hahn, S.Y.: Optimization of transformer winding considering AC loss of BSCCO wire. IEEE Trans. Appl. Supercond. 15(2), 1839–1842 (2005)

    ADS  Google Scholar 

  74. Kim, J.T., Kim, W.S., Kim, S.H., Choi, K.D., Han, J.H., Hong, G.W., Hahn, S.Y.: Analysis of AC losses in HTS pancake windings for transformer according to the operating temperature. IEEE Trans. Appl. Supercond. 14(5), 1888–1891 (2005)

    Google Scholar 

  75. Ghabeli, A., Yazdani-Asrami, M., Gholamian, S.A.: A novel unsymmetrical multi-segment concentric winding scheme for electromagnetic force and leakage flux mitigation in HTS Power transformers. IEEE Trans. Appl. Supercond. 25(6), 1–10 (2015)

    Google Scholar 

  76. Li, X., Zhang, J., Huang, K., Song, X., Fang, J.: Electromagnetic design of high-temperature superconducting traction transformer for high-speed railway train. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019)

    Google Scholar 

  77. Kummeth, P., et al.: Development and test of a 100 kVA superconducting transformer operated at 77 K. Supercond. Sci. Technol. 13, 503 (2000)

    ADS  Google Scholar 

  78. Wang, Y.S., et al.: Development of solenoid and double pancake windings for a three-phase 26 kVA HTS transformer. IEEE Trans. Appl. Supercond. 14(2), 924–927 (2004)

    ADS  Google Scholar 

  79. Wang, Y., et al.: A single phase model 9 kVA high-temperature superconducting power transformer. Supercond. Sci. Technol. 17, 1014 (2004)

    ADS  Google Scholar 

  80. Y. Wang, et al., “Development and test in grid of 630 kVA three-phase high temperature superconducting transformer”, Fron. Elec. Electro. Eng. China, Springer, Vol.4. no.1, pp. 104–113, 2009

  81. Hu, D., et al.: Design and electromagnetic analysis of a 330 kVA single-phase HTS transformer. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    MathSciNet  Google Scholar 

  82. Hu, D., Li, Z., Hong, Z., Jin, Z.: Development of a single-phase 330kVA HTS transformer using GdBCO tapes. Phys. C: Supercond. App. 539, 8–12 (2017)

    ADS  Google Scholar 

  83. Hu, M., et al.: Characteristic tests of GdBCO superconducting transformer with different iron core structures. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    MathSciNet  Google Scholar 

  84. Kucewicz, B.K., Wojtasiewicz, G.: The proposal of a transformer model with winding made of parallel 2G HTS Tapes with Transpositioners and its contact cooling system. IEEE Trans. Appl. Supercond. 28(4), 1–5 (2018)

    Google Scholar 

  85. Polak, M., et al.: Comparison of solenoidal and pancake model windings for a superconducting transformer. IEEE Trans. Appl. Supercond. 11(1), 1478–1481 (2001)

    ADS  MathSciNet  Google Scholar 

  86. Zizek, F., et al.: End-winding region configuration of an HTS transformer. IEEE Trans. Appl. Supercond. 12(1), 904–906 (2002)

    ADS  Google Scholar 

  87. Jelinek, Z., et al.: Test results of 14 kVA superconducting transformer with bi-2223/Ag windings. IEEE Trans. Appl. Supercond. 13(2), 2310–2312 (2003)

    ADS  Google Scholar 

  88. Cheon, H.G., Baek, S.M., Kwag, D.S., Kim, S.H.: Comparison of insulation test of mini-models with different winding for a HTS transformer. IEEE Trans. Appl. Supercond. 16(2), 1497–1500 (2006)

    ADS  Google Scholar 

  89. Wang, Y., Zhao, X., Han, J., Dai, S., Xiao, L., Lin, L.: Ac losses and mechanical stability in 630 kV A three-phase HTS transformer windings. Supercond. Sci. Technol. 20, 463 (2007)

    ADS  Google Scholar 

  90. Lim, H., Gueesoo, C., Lee, J.K., Ryu, K.W.: AC losses of pancake winding and Solenoidal winding made of YBCO wire for superconducting transformers. IEEE Trans. Appl. Supercond. 17(2), 1951–1954 (2007)

    ADS  Google Scholar 

  91. Iwakuma, M., et al.: Feasibility study of oxide superconducting transformers for Shinkansen rolling stock. IEEE Trans. Appl. Supercond. 12(2), 828–832 (2002)

    ADS  Google Scholar 

  92. Lee, C., Soek, B.Y.: Design of the 3 phase 60 MVA HTS transformer with YBCO coated conductor windings. IEEE Trans. Appl. Supercond. 15(2), 1867–1870 (2005)

    ADS  Google Scholar 

  93. Lee, S.W., Byun, S.B., Kim, W.S., Lee, J.K., Choi, K.D.: Design of a single phase 33 MVA HTS transformer with OLTC. IEEE Trans. Appl. Supercond. 17(2), 1939–1942 (2007)

    ADS  Google Scholar 

  94. Janowski, T., Wojtasiewicz, G.: Possibility of using the 2G HTS superconducting transformer to limit short-circuit currents in Power network. IEEE Trans. Appl. Supercond., Journ. 22(3), 1–4 (2012)

    Google Scholar 

  95. Daneshmand, S.V., Heydari, H.: Multiphysics approach in HTS transformers with different winding schemes. IEEE Trans. Appl. Supercond. 24(2), 1–8 (2014)

    Google Scholar 

  96. Liu, H., Qiu, M., Zhu, J., Liu, J., Fu, S., Wei, X.: Dynamic analysis of transformers with second-generation high-temperature superconductors. IEEE Trans. Appl. Supercond. 26(4), 1–5 (2016)

    Google Scholar 

  97. Chen, M., Yu, Y.J., Xiao, L.Y., Wang, Q.L., Chung, W., Kim, K., Baang, S.: Magnetic field analysis of HTS transformer windings with high currents. IEEE Trans. Appl. Supercond. 13(2), 2302–2305 (2003)

    ADS  Google Scholar 

  98. Li, X., Chen, Q., Sun, J., Zhang, Y., Long, G.: Analysis of magnetic field and circulating current for HTS transformer windings. IEEE Trans. Appl. Supercond. 15(3), 3808–3813 (2005)

    ADS  Google Scholar 

  99. Chen, X., Jin, J.: Superconducting Air-Core Transformers and Their Electromagnetic Analysis. IEEE Inter. Conf. Appl. Supercond. Electro. Dev. Conf. Paper. (2009)

  100. D Khosravi, M Saniei “Design and numerical magnetic fields analysis of 10 kVA, 220/24 V, HTS transformer”, VDE, 46th Inte. Uni. Pow. Eng. Conf. (UPEC), Conf. Paper, 2011

  101. Qiu, Q., et al.: Winding design and electromagnetic analysis for a 1250-kVA HTS transformer. IEEE Trans. Appl. Supercond. 25(1), 1–7 (2015)

    Google Scholar 

  102. Choi, J., Lee, S., Choi, S., Park, M., Kim, W., Lee, J., Choi, K., Lee, H., Hahn, S.: Conceptual design of a 5 MVA single phase high temperature superconducting transformer. IEEE Trans. Appl. Supercond. 18(2), 636–639 (2008)

    ADS  Google Scholar 

  103. Glasson, N., Staines, M., Buckley, R., Pannu, M., Kalsi, S.: Development of a 1 MVA 3-phase superconducting transformer using YBCO Roebel cable. IEEE Trans. Appl. Supercond. 21(3), 1393–1396 (2011)

    ADS  Google Scholar 

  104. Daneshmand, S.V., Heydari, H.: Hysteresis loss improvement in HTS transformers using hybrid winding schemes. IEEE Trans. Appl. Supercond. 22(2), 1–7 (2012)

    Google Scholar 

  105. Wu, S., et al.: The influence of flux diverter structures on the AC loss of HTS transformer windings. IEEE Trans. Appl. Supercond. 29(2), 1–5 (2019)

    Google Scholar 

  106. Cheon, H.G., et al.: Insulation design and experimental results for transmission class HTS transformer with composite winding. IEEE Trans. Appl. Supercond. 18(2), 648–651 (2008)

    ADS  Google Scholar 

  107. Choi, J.H., Choi, J.W., Baek, S.M., Kim, S.H.: The insulation design of 154 kV HTS transformer and on load tap changers. IEEE Trans. Appl. Supercond. 19(3), 1972–1975 (2009)

    ADS  Google Scholar 

  108. J.K. Sykulski, K.F. Goddard, R. L. Stoll; “High temperature superconducting demonstrator transformer: design considerations and first test results”, IEEE Trans. Mag., Vol.35, no.5, pp3559–3561, 1999, 3559

  109. Schwenterly, S.W., Mehta, S.P., Walker, M.S., Jones, R.H.: Development of HTS power transformers for the 21st century: Waukesha electric systems/IGC-SuperPower/RG&E/ORNL SPI collaboration. Phy. C Supercond. 382(1), 1–6 (2002)

    ADS  Google Scholar 

  110. Schlosser, R., Schmidt, H., Leghissa, M., Meinert, M.: Development of high-temperature superconducting transformers for railway applications. IEEE Trans. Appl. Supercond. 13(2), 2325–2330 (2001)

    ADS  Google Scholar 

  111. Weber, C.S., et al.: Design and operational testing of a 5/10-MVA HTS utility power transformer. IEEE Trans. Appl. Supercond. 15(2), 2210–2213 (2005)

    ADS  Google Scholar 

  112. Lee, S.W., et al.: Characteristics of a continuous disk winding for large power HTS transformer. IEEE Trans. Appl. Supercond. 17(2), 1943–1946 (2007)

    ADS  Google Scholar 

  113. H Hata, H Kamijo, K Nagashima, K Ikeda “Development of Superconducting Transformer for Railway Traction”, IEEE, Elec. Sys. Aircraft, Railway and Ship Prop., Conf. Paper, 2010

  114. Sissimatos, E., Harms, G., Oswald, B.R.: Optimization of high-temperature superconducting power transformers. IEEE Trans. Appl. Supercond. 11(1), 1574–1577 (2001)

    ADS  Google Scholar 

  115. J Jin, X Chen “Design of a 10 kVA HTS transformer prototype”, IEEE Asia Pacific Conf. Cir. Sys., Conf. Paper, 2008

  116. X Chen, J Jin, Y Guo, J Zhu “Design and analysis of a 10 kVA HTS transformer”, Inter. Conf. Elec. Mach. Sys., Conf. Paper, 2008

  117. XY Chen, JX Jin “Development of HTS transformer and a 10 kVA HTS transformer prototype design”, Journ. Elec. Sci. Tech. China, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Moradnouri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradnouri, A., Ardeshiri, A., Vakilian, M. et al. Survey on High-Temperature Superconducting Transformer Windings Design. J Supercond Nov Magn 33, 2581–2599 (2020). https://doi.org/10.1007/s10948-020-05539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05539-6

Keywords

Navigation