Skip to main content
Log in

The Mechanism of Doping and the Features of Phase Diagrams of HTSC Cuprates and Ferropnictides

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We propose a generalized model of electronic structure modification in HTSC cuprates and ferropnictides under doping. In this model, the role of doping consists in only a local change in the electronic structures of the parent phases of cuprates and ferropnictides due to the formation of trion complexes comprising a doped carrier localized in unit cell and charge transfer (CT) excitons around it. These CT excitons emerge in CuO4 or AsFe4 plaquettes in the CuO2 or FeAs basal planes (CT plaquettes) under the influence of the doped carrier, restricting its itinerancy. As the dopant concentration is increased, CT plaquettes combine into clusters of the so-called CT phase. It is this CT phase that is related in the model to the HTSC phase. In support of this assumption, we determined the ranges of dopant concentrations conforming to the existence of percolation clusters of the CT phase; these ranges were shown to coincide with the positions of the superconducting domes on the phase diagrams of these compounds. The model also perfectly describes subtle features of the phase diagrams of various cuprates and ferropnictides including the “1/8” anomaly, narrow peaks in the dependences of the London penetration depth on the concentration of the dopant, and other specific features. The mechanism of the generation of free carriers in the CT phase, provided by intrinsic self-doping, was considered. The mechanism is not directly related to external doping, but is due to the interaction of band electrons with so-called Heitler–London (HL) centres inherently existing in the percolation cluster of the CT phase and representing pairs of adjacent CuO4 or AsFe4 CT plaquettes in the CuO2 or FeAs basal planes. Material in the CT phase was shown to represent a medium, in which the mechanism of excitonic superconductivity, specified by the interaction of band electrons with HL centres, can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mitsen, K.V., Ivanenko, O.M.: Towards the issue of the nature of Fermi surface, pseudogaps and Fermi arcs in cuprate HTSCs. J. Alloys Compd. 791, 30 (2019)

    Article  Google Scholar 

  2. Allender, D., Bray, J., Bardeen, J.: Model for an exciton mechanism of superconductivity. Phys. Rev. B. 7, 1020 (1973)

    Article  ADS  Google Scholar 

  3. Singh, D.J., Du, M.-H.: Density functional study of LaFeAsO1−xFx: a low carrier density superconductor near itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008)

    Article  ADS  Google Scholar 

  4. Nohara, M., Kudo, K.: Arsenic chemistry of iron-based superconductors and strategy for novel superconducting materials. Adv. Phys. X. 2(2), 450–461 (2017)

    Google Scholar 

  5. Varma, C.M., Schmitt-Rink, S., Abrahams, E.: Charge transfer excitations and superconductivity in “ionic” metals. Solid State Commun. 88, 847 (1993)

    Article  ADS  Google Scholar 

  6. Romberg, H., Alexander, M., Nucker, N., Adelmann, P., Fink, J.: Electronic structure of the system La2-xSrxCuO4+d. Phys. Rev. B. 42, 8769 (1990)

    Article  ADS  Google Scholar 

  7. Mitsen, K.V., Ivanenko, O.M.: Phase diagram of La2-xMxCuO4 as the key to understanding the nature of high-Tc superconductors. Physics-Uspekhi. 47, 493 (2004)

    Article  ADS  Google Scholar 

  8. Haskel, D., Polinger, V., Stern, E.A.: Where do the doped holes go in La2− xSrxCuO4? A close look by XAFS. AIP Conf Proc. 483, 241 (1999)

    Article  ADS  Google Scholar 

  9. Hammel, P.C., Statt, B.W., Martin, R.L., Chou, F.C., Johnston, D.C., Cheong, S.-W.: Localized holes in superconducting lanthanum cuprate. Phys. Rev. B. 57, 712 (1998)

    Article  ADS  Google Scholar 

  10. Wadati, H., Elfimov, I., Sawatzky, G.A.: Where are the extra d electrons in transition-metal-substituted iron pnictides? Phys. Rev. Lett. 105, 157004 (2010)

    Article  ADS  Google Scholar 

  11. Berlijn, T., Lin, C.H., Garber, W., Ku, W.: Do transition-metal substitutions dope carriers in iron-based superconductors? Phys. Rev. Lett. 108, 207003 (2012)

    Article  ADS  Google Scholar 

  12. Levy, G., Sutarto, R., Chevrier, D., Regier, T., Blyth, R., Geck, J., Wurmehl, S., Harnagea, L., Wadati, H., Mizokawa, T., Elfimov, I.S., Damascelli, A., Sawatzky, G.A.: Probing the role of Co substitution in the electronic structure of iron pnictides. Phys. Rev. Lett. 109, 077001 (2012)

    Article  ADS  Google Scholar 

  13. Segawa, K., Ando, Y.: Transport anomalies and the role of pseudogap in the 60-K phase of YBa2Cu3O7−δ. Phys. Rev. Lett. 86, 4907 (2001)

    Article  ADS  Google Scholar 

  14. Kumagai, K.I., Kawano, K., Watanabe, I., Nishiyama, K., Nagamine, K.: Magnetic order and evolution of the electronic state around x= 0.12 in La2−xBaxCuO4and La2−xSrxCuO4. J. Supercond. 7, 63 (1994)

    Article  ADS  Google Scholar 

  15. Krockenberger, Y., Kurian, J., Winkler, A., Tsukada, A., Naito, M., Alff, L.: Superconductivity phase diagrams for the electron-doped cuprates R2−xCexCuO4 (R= La, Pr, Nd, Sm, and Eu). Phys. Rev. B. 77, 060505 (2008)

    Article  ADS  Google Scholar 

  16. Fang, L., Luo, H., Cheng, P., Wang, Z., Jia, Y., Gang, M., Shen, B., Mazin, I.I., Shan, L., Ren, C., Wen, H.-H.: Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1−xCox)2As2. Phys. Rev. B. 80, 140508 (2009)

    Article  ADS  Google Scholar 

  17. Sun, Y., Zhou, W., Cui, L.J., Zhuang, J.C., Ding, Y., Yuan, F.F., Bai, J., Shi, Z.X.: Evidence of two superconducting phases in Ca1−xLaxFe2As2. AIP Adv. 3, 102120 (2013)

    Article  ADS  Google Scholar 

  18. Rotter, M., Pangerl, M., Tegel, M., Johrendt, D.: Superconductivity and crystal structures of (Ba1−xKx)Fe2As2 (x=0–1). Angew. Chem. Int. Ed. 47, 7949 (2008)

    Article  Google Scholar 

  19. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  20. Jacobsen, J.L.: High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials. J. Phys. A Math. Theor. 47, 135001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gavrilkin, S.Y., Ivanenko, O.M., Martovitskiĭ, V.P., Mitsen, K.V., Tsvetkov, A.Y.: Percolation nature of the 60-K to 90-K phase transition in YBa2Cu3O6+δ. J. Exp. Theor. Phys. 110, 783 (2010)

    Article  ADS  Google Scholar 

  22. Takagi, H., Cava, R.J., Marezio, M., Batlogg, B., Krajewski, J.J., Peck Jr., W.F., Bordet, P., Cox, D.E.: Disappearance of superconductivity in overdoped La2−x SrxCuO4 at a structural phase boundary. Phys. Rev. Lett. 68, 3777 (1992)

    Article  ADS  Google Scholar 

  23. Ikeuchi, K., Isawa, K., Yamada, K., Fukuda, T., Mizuki, J., Tsutsui, S., Baron, A.Q.R.: Growth, characterization and application of single-crystal La2-xSrxCuO4 having a gradient in Sr concentration. Jpn. J. Appl. Phys. 45, 1594–1601 (2006)

    Article  ADS  Google Scholar 

  24. Nagano, T., Tomioka, Y., Nakayama, Y., Kishio, K., Kitazawa, K.: Bulk superconductivity in both tetragonal and orthorhombic solid solutions of (La1− xSrx)2CuO4−δ. Phys. Rev. B. 48, 9689 (1993)

    Article  ADS  Google Scholar 

  25. Hashimoto, K., et al.: A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1–xPx)2. Science. 336, 1554 (2012)

    Article  ADS  Google Scholar 

  26. Lamhot, Y., Yagil, A., Shapira, N., Kasahara, S., Watashige, T., Shibauchi, T., Matsuda, Y., Auslaender, O.M.: Local characterization of superconductivity in BaFe2(As1−xPx)2. Phys. Rev. B. 91, 060504(R) (2015)

    Article  ADS  Google Scholar 

  27. Joshi K., Nusran N., Tanatar M., Cho K., Bud’ko S., Canifeld P., Fernandes R., Levchenko A., Prozorov R.: Quantum phase transition inside the superconducting dome of Ba(Fe1-xCox)2As2 from diamond-based optical magnetometry. arXiv:1903.00053

  28. Eliashberg, G.M.: Possible mechanism of the superconductivity and of a resistance varying linearly with T. JETP Lett. 46, S81–S84 (1987)

    ADS  Google Scholar 

  29. Volkov, B.A., Tugushev, V.V.: Electron mechanism for the formation of heavy charged and neutral bosons in systems with variable valence. JETP Lett. 46, 245 (1987)

    ADS  Google Scholar 

  30. Arseyev, P.I.: A possible mechanism for high-T superconductivity. JETP. 74, 667 (1992)

    Google Scholar 

  31. Simanek, E.: Superconductivity at disordered interfaces. Solid State Commun. 32, 731 (1979)

    Article  ADS  Google Scholar 

  32. Ting, C.S., Talwar, D.N., Ngai, K.L.: Possible mechanism of superconductivity in metal–semiconductor eutectic alloys. Phys. Rev. Lett. 45, 1213 (1980)

    Article  ADS  Google Scholar 

  33. Schuttler, H.-B., Jarrell, M., Scalapino, D.J.: Superconducting Tc enhancement due to excitonic negative-U centers: a Monte Carlo study. Phys. Rev. Lett. 58, 1147 (1987)

    Article  ADS  Google Scholar 

  34. Kulik, I.O.: Electronic transfer of local pairs and superconductivity in metal oxide compounds. Int. J. Mod. Phys. B. 2(05), 851–865 (1988)

    Article  ADS  Google Scholar 

  35. Jin, R., Ott, H.R.: Hall effect of YBa2Cu3O7-d single crystals. Phys. Rev. B. 57, 13872 (1998)

    Article  ADS  Google Scholar 

  36. Wang, L.M., Sou, U.-C., Yang, H.C., Chang, L.J., Cheng, C.-M., Tsuei, K.-D., Su, Y., Wolf, T., Adelmann, P.: Mixed-state Hall effect and flux pinning in Ba(Fe1−xCox)2As2single crystals (x = 0.08 and 0.10). Phys. Rev. B. 83, 134506 (2011)

    Article  ADS  Google Scholar 

  37. Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. A. 134, 6 (1964)

    Article  Google Scholar 

  38. Ginzburg, V.L.: Concerning surface superconductivity. J. Exp. Theor. Phys. 47, 1549 (1964)

    Google Scholar 

Download references

Funding

This work was supported by Program of the Presidium of the Russian Academy of Sciences “Fundamental problems of high-Tc superconductivity”.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the work presented in this paper. K.M. conceived the original idea and designed the model. O.I. provided critical feedback, analysed previously conducted experiments from literature and helped shape the research. Both K.M. and O.I. discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Kirill Mitsen.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsen, K., Ivanenko, O. The Mechanism of Doping and the Features of Phase Diagrams of HTSC Cuprates and Ferropnictides. J Supercond Nov Magn 33, 2637–2648 (2020). https://doi.org/10.1007/s10948-020-05512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05512-3

Keywords

Navigation