Skip to main content
Log in

Finite Size Effect in Cu-doped Ni thin Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The finite size effect power law in Cu-doped Ni thin film were investigated by probing the Curie temperature (Tc)-dependence on the NixCu1-x thin film thickness. It is found that both magnetization and Tc decreases proportional to the Cu content. Tc is directly proportional to the number of pairwise spin-spin interactions in a manifold cluster of spins according to the mean field approximation. The experiment results confirm the spin bag model built in ultrathin magnetic films previous, in which each spin interacts equally strongly with neighbors over some finite interaction length N0. Furthermore, upon varying the composition of the Ni-Cu alloys, the range of spin-spin interactions N0 decreases with increasing concentration of the Cu. Since there is little change of the band structure and conduct electron properties in NixCu1-x alloy films, this phenomenon was attributed to the decreasing of the propagation distance of conduct electrons due to the scattering by the Cu impurities. The present results indicate the ferromagnetic order in 3d metal probably delivered by the itinerant electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parkin, S.S.P.: Phys Rev Lett. 67, 3598 (1991)

    Article  ADS  Google Scholar 

  2. Bruno, P., Chappert, C.: Phys Rev Lett. 67, 1602 (1991)

    Article  ADS  Google Scholar 

  3. Fisher, M.E., Barber, M.N.: Phys Rev Lett. 28, 1516 (1972)

    Article  ADS  Google Scholar 

  4. Ritchie, D.S., Fisher, M.E.: Phys Rev B. 7, 480 (1973)

    Article  ADS  Google Scholar 

  5. Qiu, Z.Q., Pearson, J., Bader, S.D.: Phys Rev Lett. 70, 1006 (1993)

    Article  ADS  Google Scholar 

  6. Schneider, C.M., et al.: Phys Rev Lett. 64, 1059 (1990)

    Article  ADS  Google Scholar 

  7. Huang, F., Kief, M.T., Mankey, G.J., Willis, R.F.: Phys Rev B. 49, 3962 (1994)

    Article  ADS  Google Scholar 

  8. Li, Y., Baberschke, K.: Phys Rev Lett. 68, 1208 (1992)

    Article  ADS  Google Scholar 

  9. Tischer, M., Arvanitis, D., Yokoyama, T., Lederer, T., Tröger, L., Baberschke, K.: Surf Sci. 307–309, 1096 (1994)

    Article  ADS  Google Scholar 

  10. Tjeng, L.H., Idzerda, Y.U., Rudolf, P., Sette, F., Chen, C.T.: J Magn Magn Mater. 109, 288 (1992)

    Article  ADS  Google Scholar 

  11. Tian, C.S., et al.: Phys Rev Lett. 94, 137210 (2005)

    Article  ADS  Google Scholar 

  12. Samuel Jiang, J., Chien, C.L.: J Appl Phys. 79, 5615 (1996)

    Article  ADS  Google Scholar 

  13. Jiang, J.S., Davidović, D., Reich, D.H., Chien, C.L.: Phys Rev Lett. 74, 314 (1995)

    Article  ADS  Google Scholar 

  14. Kenning, G.G., Slaughter, J.M., Cowen, J.A.: Phys Rev Lett. 59, 2596 (1987)

    Article  ADS  Google Scholar 

  15. Zhang, R., Willis, R.F.: Phys Rev Lett. 86, 2665 (2001)

    Article  ADS  Google Scholar 

  16. Srivastava, P., Wilhelm, F., Ney, A., Farle, M., Wende, H., Haack, N., Ceballos, G., Baberschke, K.: Phys Rev B. 58, 5701 (1998)

    Article  ADS  Google Scholar 

  17. Wang, L., Xu, W.T., Zhao, W.L., Li, G., Huang, Y.X., Li, A.X., Liu, Y.M.: Appl Phys Lett. 116, 012405 (2020)

    Article  ADS  Google Scholar 

  18. Willis, R.F., Bramfeld, T.S., Podalak, K.R.: J Appl Phys. 101, 09G119 (2007)

    Article  Google Scholar 

  19. Sun, M., Ren, Q., Zhao, Y., Wang, S., Yu, J., Tang, W.: J Appl Phys. 119(14), 143904 (2016)

    Article  ADS  Google Scholar 

  20. Wang, S., Yu, J.: J Supercond Nov Magn. 31(9), 2789–2795 (2018)

    Article  Google Scholar 

  21. Altmann, K.N., Gilman, N., Hayoz, J., Willis, R.F., Himpsel, F.J.: Phys Rev Lett. 87, 137201 (2001)

    Article  ADS  Google Scholar 

  22. Mott, N.F.: Proc Phys Soc. 47, 571 (1935)

    Article  ADS  Google Scholar 

  23. Lang, X.Y., Zheng, W.T., Jiang, Q.: Phys Rev B. 73, 224444 (2006)

    Article  ADS  Google Scholar 

  24. Wang, J., Wu, W., Zhao, F., Zhao, G.-m.: Phys Rev B. 84, 174440 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key R&D Program of China(2017YFA0403503), National Natural Science Foundation of China (51371007 and 11674001) and Nanjing 321 strategy (2013B01008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, W.L., Xu, W.T. et al. Finite Size Effect in Cu-doped Ni thin Films. J Supercond Nov Magn 33, 2159–2163 (2020). https://doi.org/10.1007/s10948-020-05479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05479-1

Keywords

Navigation