Skip to main content
Log in

Structural and Magnetic Studies of Al-Doped Y2.8 La0.2 Fe5 O12 Nanoferrites Prepared by a Sol-Gel Route

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Y3Fe5O12 and Y2.8La0.2Fe5 − xAlxO12 (x = 0.0, 0.1, 0.2, and 0.3) nanoferrites have been prepared by the sol-gel auto combustion route followed by sintering at 900 ° C for 3 h. The garnet phase formation has been confirmed by analyzing XRD patterns and also by noting intense bands for Fe-O vibrations in FTIR spectra. The XRD analysis has shown a decreasing trend for lattice parameter, X-ray density, and d-spacing due to the addition of smaller Al3+ ions at tetrahedral sites. The SEM study has shown agglomerated and branched morphology with an average branch width and branch length ranging between 90–140 nm and 537–437 nm, respectively. Enhanced values of saturation magnetization have been observed for all the samples due to the presence of 6.7% of La3+ ions in place of Y3+ ions. However, it decreased due to weakening of superexchange interaction with the addition of Al3+ ions at tetrahedral sites. These nanoferrite powders can be used as a substitute for costly rare earth garnets and also in many high-frequency microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sharma, V., Saha, J., Patnaik, S., Kuanr, B.K.: Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles - microwave material. AIP Adv. 7, 056405 (2017). https://doi.org/10.1063/1.4973199

    Article  ADS  Google Scholar 

  2. Mallmann, E.J.J., Sombra, A.S.B., Goes, J.C., Fechine, P.B.A.: Yttrium iron garnet: properties and applications review. Solid State Phenom. 202, 65–96 (2013). https://doi.org/10.4028/www.scientific.net/SSP.202.65

    Article  Google Scholar 

  3. Pardavi-Horvath, M.: Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215–216, 171–183 (2000). https://doi.org/10.1016/S0304-8853(00)00106-2

    Article  ADS  Google Scholar 

  4. Ramesh, T., Raju, P., Shinde, R.S., Murthy, S.R.: Microwave hydrothermal synthesis and electromagnetic properties of nanocrystalline Y3-xDyxFe5O12 garnets for microwave antenna applications. Int. J. ChemTech. Res. 7(2), 539–546 (2014–2015)

    Google Scholar 

  5. Douglas Adam, J.: Ferrite devices and materials. IEEE Trans. Microwave Theory Techn. 50(3), 721–737 (2002). https://doi.org/10.1109/22.989957

    Article  ADS  Google Scholar 

  6. Ganne, J.-P., Lebourgeois, R., Pat, M., Dubreuil, D., Pinier, L., Pascard, H.: The electromagnetic properties of Cu-substituted garnets with low sintering temperature. J. Eur. Ceram. Soc. 27, 2771–2777 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.054

    Article  Google Scholar 

  7. Ali, W.F.F.W., Jaafar, H.H., Ain, M.F., Abdullah, N.S., Ahmad, Z.A.: Enhancement of YIG bandwidth efficiency through Ce-doping for dielectric resonator antenna (DRA) applications. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-014-2428-7

  8. Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Xu, Z., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321(14), 2035–2047, ISSN 0304-8853 (2009). https://doi.org/10.1016/j.jmmm.2009.01.004

    Article  ADS  Google Scholar 

  9. Vincent, G.: Harris, modern microwave ferrites. IEEE Trans. Magn. 48(3), 1075–1104 (2012). https://doi.org/10.1109/TMAG.2011.2180732

    Article  Google Scholar 

  10. Chang, T.-H.: Ferrite materials and applications. Intech Open (2019). https://doi.org/10.5772/intechopen.84623

  11. Praveena, K., Srinath, S.: Effect of Gd3+ on dielectric and magnetic properties of Y3Fe5O12. J. Magn. Magn. Mater. 349, 45–50 (2014). https://doi.org/10.1016/j.jmmm.2013.08.035

    Article  ADS  Google Scholar 

  12. Murthy, V.R.K., Raju, K.C.J., Viswanathan, B.: Characteristics of materials for microwave devices. Bull. Mater. Sci. 15, 213 (1992). https://doi.org/10.1007/BF02927499

    Article  Google Scholar 

  13. Geller, S., Gilleo, M.A.: Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3·xM2O3·(5−x)Fe2O3. Phys. Rev. 110, 73 (1958). https://doi.org/10.1103/PhysRev.110.73

    Article  ADS  Google Scholar 

  14. Geller, S., Gilleo, M.A.: The crystal structure and ferrimagnetism of yttrium iron garnet, Y3Fe2(FeO4)3. J. Phys. Chem. Solids. 3(1–2), 30–36 (1957). https://doi.org/10.1016/0022-3697(57)90044-6

    Article  ADS  Google Scholar 

  15. Mahour, L.N., Manjunatha, M., Choudhary, H.K., Kumar, R., Anupama, A.V., Damle, R., Ramesh, K.P., Sahoo, B.: Structural and magnetic properties of Al-doped yttrium iron aluminium garnet ceramics: 57Fe internal field NMR and Mössbauer spectroscopy study. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.09.213

  16. Lax, B., Button, K.J.: Microwave ferrites and ferrimagnetics. McGraw-Hill, New York (1962)

    Google Scholar 

  17. Ramesh, T., Shinde, R.S., Murthy, S.R.: Nanocrystalline gadolinium iron garnet for circulator applications. J. Magn. Magn. Mater. 324, 3668–3673 (2012). https://doi.org/10.1016/j.jmmm.2012.05.029

    Article  ADS  Google Scholar 

  18. Lataifeh, M.S.: Room-temperature magnetization measurements of some substituted rare earth iron garnets. Appl. Phys. A. 92(3), 681–685 (2008). https://doi.org/10.1007/s00339-008-4616-x

    Article  ADS  Google Scholar 

  19. Wu, X., Wang, X., Liu, Y., Cai, W., Peng, S., Huang, F., Lu, X., Yan, F., Zhu, J.: Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics. Appl. Phys. Lett. 95, 182903 (2009). https://doi.org/10.1063/1.3259651

    Article  ADS  Google Scholar 

  20. Nimbore, S.R., Shengule, D.R., Shukla, S.J., Bichile, G.K., Jadhav, K.M.: Magnetic and electrical properties of lanthanum substituted yttrium iron garnets. J. Mater. Sci. 41, 6460–6464 (2006). https://doi.org/10.1007/s10853-006-0365-4

    Article  ADS  Google Scholar 

  21. Ahmad, H., Mohammad, N., Sirus, Z.: The theoretical investigation of the impact of substituting bismuth in yttrium iron garnet (YIG) on the Faraday rotation. World Appl. Sci. J. 19(3), 424–430 (2012). https://doi.org/10.5829/idosi.wasj.2012.19.03.3535

    Article  Google Scholar 

  22. Musa, M.A., et al.: Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminium iron garnet (YAlG) nanoferrite via sol-gel synthesis. Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.02.038

  23. Musa, M.A., Azis, R.’a.S., Osman, N.H., Hassan, J., Dihom, M.M.: Structural and magnetic properties of yttrium aluminium iron garnet (YAlG) nanoferrite prepared via auto-combustion sol-gel synthesis. J. Aust. Ceram. Soc. https://doi.org/10.1007/s41779-017-0126-7

  24. Mohaidat, Q.I., Lataifeh, M., Hamasha, K., Mahmood, S.H., Bsoul, I., Awawdeh, M.: The structural and the magnetic properties of aluminum substituted yttrium iron garnet. Mater. Res. https://doi.org/10.1590/1980-5373-MR-2017-0808

  25. Niyaifar, M., Beitollahi, A., Shiri, N., Mozaffari, M., Amighian, J.: Effect of indium addition on the structure and magnetic properties of YIG. J. Magn. Magn. Mater. 322(7), 777–779 (2010). https://doi.org/10.1016/j.jmmm.2009.11.001

    Article  ADS  Google Scholar 

  26. Dong, B., Yang, H., Cui, Y., et al.: J. Mater. Sci. 42, 3167 (2007). https://doi.org/10.1007/s10853-006-1063-y

    Article  ADS  Google Scholar 

  27. Wu, M.: Nonlinear spin waves in magnetic film feedback rings. Solid State Phys. 62, 163–224 (2010). https://doi.org/10.1016/B978-0-12-374293-3.00003-1

    Article  Google Scholar 

  28. Sadhana, K., Murthy, R., Sarabu, Praveena, K.: Effect of Sm3+ on dielectric and magnetic properties of Y3Fe5O12 nanoparticles. J. Mater. Sci. Mater. Electron. 25, (2014). https://doi.org/10.1007/s10854-014-2282-7

  29. Xu, H., Yang, H.: Magnetic properties of Y3Fe5O12 nanoparticles doped Bi and Ce ions. Mater. Manuf. Process. 23(1), 1–4 (2007). https://doi.org/10.1080/10426910701524212

    Article  Google Scholar 

  30. Cheng, Z., Yang, H.: Magnetic properties of Nd-Y3Fe5O12 nanoparticles. J. Mater. Sci. Mater. Electron. 18, 18 (2007). https://doi.org/10.1007/s10854-007-9130-y

    Article  Google Scholar 

  31. Sadhana, K., Ramana Murthy, S., Praveena, K.: Structural and magnetic properties of Dy3+ doped Y3Fe5O12 for microwave devices. Mater. Sci. Semicond. Process. 34, 305–311 (2015)

    Article  Google Scholar 

  32. Zeng, M.: CO-precipitation synthesis of iron-containing garnetsY3Al5 − xFexO12 and their magnetic properties. J. Magn. Magn. Mater. 393, 370–375 (2015). https://doi.org/10.1016/j.jmmm.2015.05.082

    Article  ADS  Google Scholar 

  33. Hapishah, A.N., Hashim, M., Syazwan, M.M., Idza, I.R., Rodziah, N., Ismayadi, I.: Phase, microstructure and magnetic evaluation in yttrium iron garnet (YIG) synthesized via mechanical alloying. J. Mater. Sci. Mater. Electron. 28, 15270–15278 (2017). https://doi.org/10.1007/s10854-017-7407-3

    Article  Google Scholar 

  34. Azadi Motlagh, Z., Mozaffari, M., Amighian, J.: Preparation of nano-sized Al-substituted yttrium iron garnets by the mechanochemical method and investigation of their magnetic properties. J. Magn. Magn. Mater. 321, 1980–1984 (2009). https://doi.org/10.1016/j.jmmm.2008.12.025

    Article  ADS  Google Scholar 

  35. Pal, M., Chakravorty, D.: Synthesis of nanocrystalline yttrium iron garnet by sol-gel route. Physica E. 5, 200–203 (2000). https://doi.org/10.1016/S1386-9477(99)00040-5

    Article  ADS  Google Scholar 

  36. Shirsath, S.E., Jadhav, S.S., Mane, M.L., Li, S.: Ferrites obtained by sol-gel method. In: Klein, L., Aparicio, M., Jitianu, A. (eds.) Handbook of sol-gel science and technology. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-19454-7_125-1

    Chapter  Google Scholar 

  37. Anupama, A.V., Kumar, R., Choudhary, H.K., Sahoo, B.: Synthesis of coral-shaped yttrium-aluminium-iron garnets by the solution-combustion method. Ceram. Int. https://doi.org/10.1016/j.ceramint.2017.11.059

  38. Akhtar, M.N., Sulong, A.B., Khan, M.A., Ahmad, M., Murtaza, G., Raza, M.R., Raza, R., Saleem, M., Kashif, M.: Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method. J. Magn. Magn. Mater. https://doi.org/10.1016/j.jmmm.2015.10.060

  39. Cheng, Z., Cui, Y., Yang, H., et al.: J. Nanopart. Res. 11, 1185 (2009). https://doi.org/10.1007/s11051-008-9501-1

    Article  ADS  Google Scholar 

  40. Cheng, Z., Yang, H., Yu, L., et al.: J. Mater. Sci. Mater. Electron. 19, 442 (2008). https://doi.org/10.1007/s10854-007-9357-7

    Article  Google Scholar 

  41. Uhm, Y.R., Lim, J.C., Choi, S.M., Kim, C.S.: Magnetic properties of R-YIG (R = La, Nd, and Gd) derived by a sol-gel method. J. Magn. 21(3), 303–307 (2016). https://doi.org/10.4283/JMAG.2016.21.3.303

    Article  Google Scholar 

  42. Opuchovic, O., Salak, A.N., Rehspringer, JL. et al. J. Sol-Gel Sci. Technol. (2019) 90: 209. https://doi.org/10.1007/s10971-019-04962-z

  43. Bouziane, K., Yousif, A., Widatallah, H.M., Amighian, J.: Site occupancy and magnetic study of Al3+ and Cr3+ co-substituted Y3Fe5O12. J. Magn. Magn. Mater. 320, 2330–2334 (2008). https://doi.org/10.1016/j.jmmm.2008.04.163

    Article  ADS  Google Scholar 

  44. Baños-López, E., Sánchez-De Jesús, F., Cortés-Escobedo, C.A., Barba-Pingarrón, A., Bolarín-Miró, A.M.: Enhancement in curie temperature of yttrium iron garnet by doping with neodymium. Materials. 11, (2018, 1652). https://doi.org/10.3390/ma11091652

  45. Ortega, P.P.S., Ramirez, M.A., Foschini, C.R., Garcia, F.G., Cilense, M., Simoes, A.Z.: Synthesis, structure and magnetic properties of Y3Fe5-xAlxO12 garnets prepared by the soft chemical method. Process. Appl. Ceram. 8(4), 211–218 (2014). https://doi.org/10.2298/PAC1404211O

    Article  Google Scholar 

  46. Grasset, F., Mornet, S., Demourgues, A., Portier, J., Bonnet, J., Vekris, A., Duguet, E.: Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5−xAlxO12 (0⩽x⩽2) garnet submicron particles for biomedical applications. J. Magn. Magn. Mater. 234, 409–418 (2001). https://doi.org/10.1016/S0304-8853(01)00386-9

    Article  ADS  Google Scholar 

  47. Fu, H.P., Hong, R., Wu, Y.J., Di, G.Q., Xu, B., Zheng, Y., Wei, D.: Preparation and Faraday rotation of Bi-YIG/PMMA nanocomposite. J. Magn. Magn. Mater. 320, 2584–2590 (2008). https://doi.org/10.1016/j.jmmm.2008.04.129

    Article  ADS  Google Scholar 

  48. Murumkar, V.D., Modi, K.B., Jadhav, K.M., Bichile, G.K., Kulkarni, R.G.: Magnetic and electrical properties of aluminium and chromium co-substituted yttrium iron garnets. Mater. Lett. 32, 281–285 (1997)

    Article  Google Scholar 

  49. Bhalekar, A.R., Singh, L.N.: Structural, magnetic and ESR studies of Y3AlxFe5 − xO12 (0.0 ≤ x ≤ 1.2) nanoparticles synthesized by a sol-gel method. Phys. B Condens. Matter. 570, 82–93 (2019). https://doi.org/10.1016/j.physb.2019.06.002

    Article  ADS  Google Scholar 

  50. Sanchez, R.D., Rivas, J., Vaqueiro, P., Lopez-Quintela, M.A., Caeiro, D.: Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J. Magn. Magn. Mater. 247, 92–98 (2002). https://doi.org/10.1016/S0304-8853(02)00170-1

    Article  ADS  Google Scholar 

  51. Nazlan, R., Hashim, M., Ibrahim, I.R., Idris, F.M., Ismail, I., Rahman, W.N.W.A., Abdullah, N.H., Zulkimi, M.M.M., Mustaffa, M.S.: Indium-substitution and indium-less case effects on structural and magnetic properties of yttrium-iron-garnet. J. Phys. Chem. Solids. 85, 1–12 (2015). https://doi.org/10.1016/j.jpcs.2015.04.011

    Article  ADS  Google Scholar 

  52. Lin, Q., He, Y., Xu, J., Lin, J., Guo, Z., Yang, F.: Effects of Al3+ Substitution on structural and magnetic behavior of CoFe2O4 ferrite nanomaterials. Nanomaterials. 8, 750 (2018). https://doi.org/10.3390/nano8100750

    Article  Google Scholar 

  53. Kumar, L., Kar, M.: Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011). https://doi.org/10.1016/j.jmmm.2011.03.010

    Article  ADS  Google Scholar 

  54. Kambale, R.C., Shaikh, P.A., Kamble, S.S., Kolekar, Y.D.: Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478, 599–603 (2009). https://doi.org/10.1016/j.jallcom.2008.11.101

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank SAIF, Madras, for providing characterization facilities. Authors would also like to thank Prof. V. P. Jawanjal, Head, Department of Petrochemical Engineering, Dr. Babasaheb Ambedkar Technological University, Vidyavihar, Lonere, for providing synthesis facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Bhalekar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalekar, A.R., Singh, L.N. Structural and Magnetic Studies of Al-Doped Y2.8 La0.2 Fe5 O12 Nanoferrites Prepared by a Sol-Gel Route. J Supercond Nov Magn 33, 1859–1870 (2020). https://doi.org/10.1007/s10948-020-05422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05422-4

Keywords

Navigation