Skip to main content
Log in

Structural, Elastic, Electronic, and Magnetic Properties of a New Full-Heusler Alloy Mn2MgGe: First-Principles Calculations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We present the first-principles calculations of the structural, elastic, electronic, and magnetic properties for a new full-Heusler alloy Mn2MgGe. Both L21 and XA structures are considered for both nonmagnetic and ferromagnetic states. The results show that the XA structure in the ferromagnetic state is the energetically most favorable for the full-Heusler alloy, and exhibits ductile behavior, significant anisotropy, and robust half-metallicity. The total spin moment is 2.000 μB per formula unit in equilibrium state, which follows the Slater-Pauling rule. The spin-up electrons are metallic, whereas the spin-down bands are semiconductor with a gap of 1.086 eV at the equilibrium lattice constant of 6.066 Å. Half-metallicity is maintained within the lattice constant range from 5.6 to 6.1 Å. Our results indicate that Mn2MgGe is an interesting candidate in the area of spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yahiaoui, I.E., Lazreg, A., Dridi, Z., Al-Douri, Y., Bouhafs, B.: Electronic and magnetic properties of Co2CrGa1−xSix Heusler alloys. J. Supercond. Nov. Magn. 30, 421–424 (2017)

    Google Scholar 

  2. Amrich, O., Monir, M.E.A., Baltach, H., Omran, S.B., Sun, X.W., Wang, X., Al-Douri, Y., Bouhemadou, A., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Nov. Magn. 31, 241–250 (2018)

    Google Scholar 

  3. Fadila, B., Ameri, M., Bensaid, D., Noureddine, M., Ameri, I., Mesbaha, S., Al-Douri, Y.: Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018)

    ADS  Google Scholar 

  4. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)

    ADS  Google Scholar 

  5. Ahmaian, F., Salary, A.: Half-metallicity in the inverse Heusler compounds Sc2MnZ (Z = C, Si, Ge, and Sn). Intermetallics 46, 243–249 (2014)

    Google Scholar 

  6. Graf, T., Felser, C., Parkin, S.S.P.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Ch. 39, 1–50 (2011)

    Google Scholar 

  7. Khelfaoui, F., Ameri, M., Bensaid, D., Ameri, I., Al-Douri, Y.: Structural, elastic, thermodynamic, electronic,and magnetic investigations of full-Heusler compound Ag2CeAl: FP-LAPW method. J. Supercond. Nov. Magn. 31, 3183–3192 (2018)

    Google Scholar 

  8. Ishida, S., Asano, S., Ishida, J.: Bandstructures and hyperfine fields of Heusler alloys. J. Phys. Soc. Jpn 53, 2718–2715 (1984)

    ADS  Google Scholar 

  9. Itoh, H., Nakamichi, T., Yamaguchi, Y., Kazama, N.: Neutron diffraction study of Heusler type alloy Mn0.47V 0.28Al0.25. Trans. Jpn. Inst. Met. 24, 265–271 (1983)

    Google Scholar 

  10. Zenasni, H., Faraoun, H.I., Esling, C.: First-principle prediction of half-metallic ferrimagnetism in Mn-based full-Heusler alloys with highly ordered structure. J. Magn. Magn. Mater. 333, 162–168 (2013)

    ADS  Google Scholar 

  11. Ramesh Kumar, K., Harish Kumar, N., Babu, P.D., Venkatesh, S., Ramakrishnan, S.: Investigation of atomic anti-site disorder and ferrimagnetic order in the half-metallic Heusler alloy Mn2VGa. J. Phys.: Condens. Matter 24, 336007 (2012)

    Google Scholar 

  12. Qi, S., Zhang, C.H., Chen, B., Shen, J., Chen, N.: First-principles study on the ferrimagnetic half-metallic Mn2FeAs alloy. J. Solid State Chem. 225, 8–12 (2015)

    ADS  Google Scholar 

  13. Berri, S., Ibrir, M., Maouche, D., Bensalem, R.: First principles study of structural, electronic and magnetic properties of Mn2CoAs. J. Magn. Magn. Mater. 361, 132–136 (2014)

    ADS  Google Scholar 

  14. Liu, H.Z., Meng, F., Liu, H.Y., Li, J.Q., Liu, E.K., Wu, G.H., Zhu, X.X., Jiang, C.B.: Origin of the Z - 28 rule in Mn2Cu-based Heusler alloys: a comparing study. J. Magn. Magn. Mater. 324, 2127–2130 (2012)

    ADS  Google Scholar 

  15. Kervan, S., Kervan, N.: Half-metallic properties of the CuHg2Ti-type Mn2ZnSi full-Heusler compound. Curr. Appl. Phys. 13, 80–83 (2013)

    ADS  Google Scholar 

  16. Abada, A., Amara, K., Hiadsi, S., Amrani, B.: First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. J. Magn. Magn. Mater. 388, 59–67 (2015)

    ADS  Google Scholar 

  17. Kervan, N., Kervan, S., Canko, O., Atiş, M., Taşkin, F.: Half-metallic ferrimagnetism in the Mn2NbAl full-Heusler compound: a first-principles study. J. Supercond. Nov. Magn. 29, 187–192 (2015)

    Google Scholar 

  18. Gupta, D.C., Bhat, I.H.: Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMn2Ge and RuMn2Sb Heusler alloys. Mater. Sci. Eng. B 193, 70–75 (2015)

    Google Scholar 

  19. Jiang, D.G., Ye, Y.X., Liu, H.F., Gou, Q.G., Wu, D.L., Wen, Y.F., Liu, L.L.: First-principles calculations of electronic, acoustic and anharmonic properties of Mn2RuZ (Z = Si and Ge) Heusler compounds. J. Magn. Magn. Mater. 458, 268–278 (2018)

    ADS  Google Scholar 

  20. Bensaid, D., Hellal, T., Ameri, M., Azzaz, Y., Doumi, B., Al-Douri, Y., Abderrahim, B., Benzoudji, F.: First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler alloys. J. Supercond. Nov. Magn. 29, 1843–1850 (2016)

    Google Scholar 

  21. Semari, F., Dahmane, F., Baki, N., Al-Douri, Y., Akbudak, S., Uğur, G., Uğur, Ş., Bouhemadou, A., Khenata, R., Voon, C.H.: First-principle calculations of structural, electronic and magnetic investigations of Mn2RuGe1−xSnx quaternary Heusler alloys. Chinese J. Phys. 56, 567–573 (2018)

    ADS  Google Scholar 

  22. Wei, X.P., Chu, S.B., Mao, G.Y., Deng, H., Lei, T., Hu, X.R.: First-principles study of properties of Mn2ZnMg alloy. J. Magn. Magn. Mater. 323, 2295–2299 (2011)

    ADS  Google Scholar 

  23. Wei, X.P., Deng, J.B., Chu, S.B., Mao, G.Y., Lei, T., Hu, X.R.: Half-metallic ferrimagnetism in full-Heusler Mn2CuMg. J. Magn. Magn. Mater. 323, 185–188 (2011)

    ADS  Google Scholar 

  24. Deng, H., Wei, X.P., Lei, T., Lei, Y.: Half-metallic and antiferromagnetism property of Mn2CdMg under pressure. J. Supercond. Nov. Magn. 25, 2465–2471 (2012)

    Google Scholar 

  25. Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993)

    ADS  Google Scholar 

  26. Kresse, G., Furthmller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Google Scholar 

  27. Kresse, G., Furthmller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  28. Blöchl, P. E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  29. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    ADS  Google Scholar 

  30. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77,3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997)

    ADS  Google Scholar 

  32. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    ADS  MathSciNet  Google Scholar 

  33. Francis, B.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    MATH  Google Scholar 

  34. Jiang, D.G., Ye, Y.X., Liu, H.F., Gou, Q.G., Wu, D.L., Wen, Y.F., Liu, L.L.: First-principles predictions on structural, elastic and half-metallic properties of Fe2LiAs Heusler compound. J. Magn. Magn. Mater. 458, 235–240 (2018)

    ADS  Google Scholar 

  35. Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224107 (2014)

    ADS  Google Scholar 

  36. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)

    ADS  Google Scholar 

  37. Voigt, W.: Lehrbuch der kristallphysik, Taubner: Leipzig, Germany (1928)

  38. Reuss, A.: Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)

    Google Scholar 

  39. Kube, C.M.: Elastic anisotropy of crystals. AIP Advance 6, 095209 (2016)

    ADS  Google Scholar 

  40. Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Google Scholar 

  41. Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: . In: Frantsevich, I.N. (ed.) Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, pp 60–180. Naukova Dumka, Kiev (1983)

  42. Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)

    Google Scholar 

  43. Brugger, K.: Determination of third-order elastic coefficients in crystals. J. Appl. Phys. 36, 768–773 (1965)

    ADS  MathSciNet  Google Scholar 

  44. Duan, Y.H., Sun, Y., Peng, M.J., Zhou, S.G.: Anisotropic elastic properties of the Ca-Pb compounds. J. Alloy Compd. 595, 14–21 (2014)

    Google Scholar 

  45. Anderson, O.L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)

    ADS  Google Scholar 

  46. Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and their Measurements. McGraw, New York (1973)

    Google Scholar 

  47. Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67–74 (2003)

    Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (51661013), the Science Funds of Natural Science Foundation of Jiangxi Province (20171BAB201020), the Technology Research Project of Jiangxi Provincial Department of Education (GJJ160737), and the PhD Start-up Fund of Natural Science Foundation of Jinggangshan University(JZB15007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Wen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Yao, W., Zeng, D. et al. Structural, Elastic, Electronic, and Magnetic Properties of a New Full-Heusler Alloy Mn2MgGe: First-Principles Calculations. J Supercond Nov Magn 32, 3001–3008 (2019). https://doi.org/10.1007/s10948-019-5086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5086-4

Keywords

Navigation