Skip to main content
Log in

Synthesis and Characterization of Hydrophobic Fe3O4 Magnetic Nanoparticles with High Saturation Magnetization

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A simple one-step solvothermal method is proposed to prepare hydrophobic Fe3O4 nanoparticles (MNPs) using iron acetylacetonate (Fe(acac)3), oleylamine (OAm), and ethylene glycol (EG). X-ray powder diffraction, scanning electron microscope, infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectrometry, and vibrating sample magnetometer are used to characterize the structure, morphology, and properties of products. The testing results indicate that the as-synthesized products are spherical-like hydrophobic MNPs, superparamagnetic at room temperature, with a saturation magnetization up to 76.8 emu/g. The good hydrophobic property of MNPs is attributed to the coverage of oleylamine, without causing a remarkable loss of magnetic property. In addition, the influences of material ratio, aging time, oleic acid, and stearic acid used as additives are studied in our research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Itoh, H., Sugimoto, T.: Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interf Sci. 265(2), 283–295 (2003)

    Article  ADS  Google Scholar 

  2. Vereda, F., Rodríguez-González, B., de Vicente, J., Hidalgo-Álvarez, R.: Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe (OH) 2. J Colloid Interf Sci. 318(2), 520–524 (2008)

    Article  ADS  Google Scholar 

  3. Wu, J.-H., Ko, S.P., Liu, H.-L., Kim, S., Ju, J.-S., Kim, Y.K.: Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater. Lett. 61(14), 3124–3129 (2007)

    Article  Google Scholar 

  4. Chen, F., Gao, Q., Hong, G., Ni, J.: Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J. Magn. Magn. Mater. 320(11), 1775–1780 (2008)

    Article  ADS  Google Scholar 

  5. Cabrera, L., Gutierrez, S., Menendez, N., Morales, M., Herrasti, P.: Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta. 53(8), 3436–3441 (2008)

    Article  Google Scholar 

  6. Marques, R.F., Garcia, C., Lecante, P., Ribeiro, S.J., Noé, L., Silva, N.J., et al.: Electro-precipitation of Fe 3 O 4 nanoparticles in ethanol. J. Magn. Magn. Mater. 320(19), 2311–2315 (2008)

    Article  ADS  Google Scholar 

  7. Strobel, R., Pratsinis, S.E.: Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol. 20(2), 190–194 (2009)

    Article  Google Scholar 

  8. Dang, F., Enomoto, N., Hojo, J., Enpuku, K.: Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrason. Sonochem. 16(5), 649–654 (2009)

    Article  Google Scholar 

  9. Lao, L.L., Ramanujan, R.V.: Magnetic and hydrogel composite materials for hyperthermia applications. J. Mater. Sci. Mater. Med. 15(10), 1061–1064 (2004). https://doi.org/10.1023/B:JMSM.0000046386.78633.e5

    Article  Google Scholar 

  10. Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., et al.: Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A. 80(2), 333–341 (2007)

    Article  Google Scholar 

  11. Xu, J.-K., Zhang, F.-F., Sun, J.-J., Sheng, J., Wang, F., Sun, M.: Bio and nanomaterials based on Fe3O4. Molecules. 19(12), 21506 (2014)

    Article  Google Scholar 

  12. Xuan, S., Wang, Y.-X.J., Yu, J.C., Cham-Fai Leung, K.: Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 21(21), 5079–5087 (2009)

    Article  Google Scholar 

  13. Kim, D.-K., Zhang, Y., Voit, W., Rao, K., Kehr, J., Bjelke, B., et al.: Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scr. Mater. 44(8), 1713–1717 (2001)

    Article  Google Scholar 

  14. Sharma, V., Waldner, F.: Superparamagnetic and ferrimagnetic resonance of ultrafine Fe3O4 particles in ferrofluids. J. Appl. Phys. 48(10), 4298–4302 (1977)

    Article  ADS  Google Scholar 

  15. Oh, S.-M., Myung, S.-T., Yoon, C.S., Lu, J., Hassoun, J., Scrosati, B., et al.: Advanced Na [Ni0. 25Fe0. 5Mn0. 25] O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. Nano Lett. 14(3), 1620–1626 (2014)

    Article  ADS  Google Scholar 

  16. Lee, S.H., Yu, S.-H., Lee, J.E., Jin, A., Lee, D.J., Lee, N., et al.: Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 13(9), 4249–4256 (2013)

    Article  ADS  Google Scholar 

  17. Lin, L.-S., Cong, Z.-X., Cao, J.-B., Ke, K.-M., Peng, Q.-L., Gao, J., et al.: Multifunctional Fe3O4@ polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano. 8(4), 3876–3883 (2014)

    Article  Google Scholar 

  18. Ghazanfari, M.R., Kashefi, M., Shams, S.F., Jaafari, M.R.: Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int. 2016, 1 (2016)

    Article  Google Scholar 

  19. Li, X., Wei, J., Aifantis, K.E., Fan, Y., Feng, Q., Cui, F.Z., et al.: Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. A. 104, 1285 (2016)

    Article  Google Scholar 

  20. Huang, W., Wang, X., Ma, G., Shen, C.: Study on the synthesis and tribological property of Fe3O4 based magnetic fluids. Tribol. Lett. 33(3), 187–192 (2009)

    Article  Google Scholar 

  21. Kalyani, R., Chockalingam, G., Gurunathan, K.: Tribological aspects of metal and metal oxide nanoparticles. Adv. Sci., Eng. Med. 8(3), 228–232 (2016)

    Article  Google Scholar 

  22. Niu JM, Zheng ZG, editors. Effect of temperature on Fe3O4 magnetic nanoparticles prepared by coprecipitation method. Adv. Mater. Res. 900, 172–176 (2014)

  23. Kandpal N, Sah N, Loshali R, Joshi R, Prasad J. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J. Sci. Ind. Res. 73(2), 87–90 (2014)

  24. Liz, L., Lopez Quintela, M., Mira, J., Rivas, J.: Preparation of colloidal Fe3O4 ultrafine particles in microemulsions. J. Mater. Sci. 29(14), 3797–3801 (1994)

    Article  ADS  Google Scholar 

  25. Liu, Z., Wang, X., Yao, K., Du, G., Lu, Q., Ding, Z., et al.: Synthesis of magnetite nanoparticles in W/O microemulsion. J. Mater. Sci. 39(7), 2633–2636 (2004)

    Article  ADS  Google Scholar 

  26. Shabani, F., Khodayari, A.: Structural, compositional, and biological characterization of Fe3O4 nanoparticles synthesized by hydrothermal method. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45(3), 356–362 (2015)

    Article  Google Scholar 

  27. Wang, J., Sun, J., Sun, Q., Chen, Q.: One-step hydrothermal process to prepare highly crystalline Fe 3 O 4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 38(7), 1113–1118 (2003)

    Article  Google Scholar 

  28. Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., et al.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3(12), 891–895 (2004)

    Article  ADS  Google Scholar 

  29. Vuong, T.K.O., Le, T.L., Pham, D.V., Pham, H.N., Le Ngo, T.H., Do, H.M., et al.: Synthesis of high-magnetization and monodisperse Fe 3 O 4 nanoparticles via thermal decomposition. Mater. Chem. Phys. 163, 537–544 (2015)

    Article  Google Scholar 

  30. Zhou, S., Jiang, W., Wang, T., Lu, Y.: Highly hydrophobic, compressible, and magnetic polystyrene/Fe3O4/graphene aerogel composite for oil–water separation. Ind. Eng. Chem. Res. 54(20), 5460–5467 (2015)

    Article  Google Scholar 

  31. Raj, K., Moskowitz, R.: Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85(1), 233–245 (1990)

    Article  ADS  Google Scholar 

  32. Levy, M., Quarta, A., Espinosa, A., Figuerola, A., Wilhelm, C., García-Hernández, M., et al.: Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem. Mater. 23(18), 4170–4180 (2011)

    Article  Google Scholar 

  33. Zhao, Y., Fang, J., Wang, H., Wang, X., Lin, T.: Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 22(6), 707–710 (2010)

    Article  Google Scholar 

  34. Xu, Z., Shen, C., Hou, Y., Gao, H., Sun, S.: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21(9), 1778–1780 (2009)

    Article  Google Scholar 

  35. Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., Li, Y.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)

    Article  Google Scholar 

  36. Liu, J., Wang, L., Wang, J., Zhang, L.: Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe 3 O 4 nanoparticles. Mater. Res. Bull. 48(2), 416–421 (2013)

    Article  Google Scholar 

  37. Muhler, M., Schlögl, R., Ertl, G.: The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138(2), 413–444 (1992)

    Article  Google Scholar 

  38. Hawn, D.D., DeKoven, B.M.: Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 10(2–3), 63–74 (1987)

    Article  Google Scholar 

  39. Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)

    Article  ADS  Google Scholar 

  40. Asakawa, K., Kawauchi, T., Zhang, X.W., Fukutani, K.: Non-collinear magnetic structure on the Fe3O4(111) surface. J. Phys. Soc. Jpn. 86(7), 074601 (2017)

    Article  ADS  Google Scholar 

  41. George, M., Mary John, A., Nair, S.S., Joy, P.A., Anantharaman, M.R.: Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)

    Article  ADS  Google Scholar 

  42. Wu, J.-B., Lin, Y.-F., Wang, J., Chang, P.-J., Tasi, C.-P., Lu, C.-C., et al.: Correlation between N 1s XPS binding energy and bond distance in metal amido, imido, and nitrido complexes. Inorg. Chem. 42(15), 4516–4518 (2003)

    Article  Google Scholar 

  43. Charlier, J., Cousty, J., Xie, Z., Poulennec, C., Bureau, C.: Adsorption of substituted pyrrolidone molecules on Au (111): an STM and XPS study. Surf. Interface Anal. 30(1), 283–287 (2000)

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant No. 81171463, 30870610).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoning Sun or Kangning Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wang, S., Wang, Y. et al. Synthesis and Characterization of Hydrophobic Fe3O4 Magnetic Nanoparticles with High Saturation Magnetization. J Supercond Nov Magn 32, 2903–2911 (2019). https://doi.org/10.1007/s10948-019-5066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5066-8

Keywords

Navigation