Skip to main content
Log in

Hydrogen Effect on Electron-Phonon Interactions in L10 FePd

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of H position in L10FePd magnetic equiatomic layered structure on electron-phonon interactions is studied via ab initio pseudopotentials density functional approach in the general gradient approximation. The structures investigated are L10FePd (parent structure), and the specific hydrides 2(FePd)1H (H@Fe layer) and 2(FePd)2H (H@Pd layer). At ground state (0 K), electronic band structure results demonstrate the emergence of Fermi surfaces (FS) in topologies of small isolated multipockets in the hydrides. Using the harmonic approximation I find the phonon energy dispersion of parent and H@Fe simple and classical but for H@Pd complex. I linked this latter structure to its topology of FS, known as Kohn anomaly. Using McMillan-Eliashberg model, I get superconducting transition temperature (Tc) values ≈ 0.00 K, 3.48 K, and 19.75 K for the parent, H@Fe and H@Pd respectively. Therefore, these hypothetical hydrides prove that H position in the structure has a direct influence on Tc values and consequently the suppression of magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohtadi, R., Orimo, S.I.: The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2(3), 16091 (2017)

    Article  ADS  Google Scholar 

  2. Gor’kov, L.P., Kresin, V.Z.: Colloquium: high pressure and road to room temperature superconductivity. Rev. Mod. Phys. 90(1), 011001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 525(7567), 73 (2015)

    Article  ADS  Google Scholar 

  4. Li, Y., Hao, J., Liu, H., Li, Y., Ma, Y.: The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140(17), 174712 (2014)

    Article  ADS  Google Scholar 

  5. Burger, J.P.: Electron-phonon coupling and superconductivity in metal-hydrogen systems. J. Less Common Met. 101, 53–67 (1984)

    Article  Google Scholar 

  6. Shamp, A., Zurek, E.: Superconductivity in hydrides doped with main group elements under pressure. Novel Superconducting Materials. 3(1), 14–22 (2017)

    Article  Google Scholar 

  7. Skoskiewicz, T.: Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems. Phys. Status Solidi A. 11(2), K123 (1972)

    Article  ADS  Google Scholar 

  8. Tripodi, P., Di Gioacchino, D., Vinko, J.D.: Magnetic and transport properties of PdH: intriguing superconductive observations. Braz. J. Phys. 34(3B), 1177–1184 (2004)

    Article  ADS  Google Scholar 

  9. Ganguly, B.N.: High frequency local modes, superconductivity and anomalous isotope effect in PdH (D) systems. Z. Phys. A Hadrons Nucl. 265(5), 433–439 (1973)

    Article  Google Scholar 

  10. Klein, B.M., Cohen, R.E.: Anharmonicity and the inverse isotope effect in the palladium-hydrogen system. Phys. Rev. B. 45(21), 12405 (1992)

    Article  ADS  Google Scholar 

  11. Villa-Cortés, S., Baquero, R.: On the calculation of the inverse isotope effect in PdH (D): a Migdal-Eliashberg theory approach. arXiv preprint arXiv:1801.03788 (2018)

  12. Errea, I., Calandra, M., Mauri, F.: First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. Phys. Rev. Lett. 111(17), 177002 (2013)

    Article  ADS  Google Scholar 

  13. Syed, H. M., Gould, T. J., Webb, C. J., Gray, E.: Superconductivity in palladium hydride and deuteride at 52–61 Kelvin. arXiv preprint arXiv:1608.01774 (2016)

  14. Nguyen, D.C., Chu, C.C., Lee, C.H., Lai, W.C., Chang, C.S.: Coercivity enhancement of FePd thin films prepared by the post-annealing of off-stoichiometric magnetron-sputtered multilayers. J. Appl. Phys. 123(7), 073901 (2018)

    Article  ADS  Google Scholar 

  15. Hsu, W.H., Bell, R., Victora, R.H.: Ultra-low write energy composite free layer spin-orbit torque MRAM. IEEE Trans. Magn. 99, 1–5 (2018)

    Article  Google Scholar 

  16. Jech, A.E., Abeledo, C.R.: Hyperfine fields in FePdH alloys. J. Phys. Chem. Solids. 28(8), 1371–1374 (1967)

    Article  ADS  Google Scholar 

  17. Carlow, J.S., Meads, R.E.: Mössbauer measurement of Curie temperatures and X-ray measurement of lattice parameters of some iron-palladium-hydrogen alloys. J. Phys. C Solid State Phys. 2(11), 2120 (1969)

    Article  ADS  Google Scholar 

  18. Carlow, J.S., Meads, R.E.: The iron-palladium-hydrogen alloy system. (Mossbauer studies). J. Phys. F: Met. Phys. 2(5), 982 (1972)

    Article  ADS  Google Scholar 

  19. Van Dongen, J.C.M., Mydosh, J.A.: Depression of the superconducting transition temperature of palladium hydride with magnetic impurities: Fe and Cr. Z. Phys. Chem. 116(116), 149–155 (1979)

    Article  Google Scholar 

  20. Boufelfel, A.: Ab initio calculations of L10 FePdH multilayered structure. Int. J. Hydrog. Energy. 41(8), 4719–4728 (2016)

    Article  Google Scholar 

  21. Giustino, F.: Electron-phonon interactions from first principles. Rev. Mod. Phys. 89(1), 015003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Alarco, J.A., Talbot, P.C., Mackinnon, I.D.: A complete and accurate description of superconductivity of AlB 2-type structures from phonon dispersion calculations. J. Supercond. Nov. Magn. 31(3), 727–731 (2018)

    Article  Google Scholar 

  23. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21(39), 395502 (2009)

    Article  Google Scholar 

  24. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  25. Marzari, N., Vanderbilt, D., De Vita, A., Payne, M.C.: Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296 (1999)

    Article  ADS  Google Scholar 

  26. Baroni, S., De Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515 (2001)

    Article  ADS  Google Scholar 

  27. Eliashberg, G.M.: Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP. 11(3), 696–702 (1960)

    MathSciNet  MATH  Google Scholar 

  28. Allen, P.B., Dynes, R.C.: Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B. 12(3), 905 (1975)

    Article  ADS  Google Scholar 

  29. Hosono, H., Kuroki, K.: Iron-based superconductors: current status of materials and pairing mechanism. Physica C: Superconductivity and its Applications. 514, 399–422 (2015)

    Article  ADS  Google Scholar 

  30. Bianconi, A., Jarlborg, T.: Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Superconducting Materials. 1(1), (2015)

  31. Bianconi, A., Jarlborg, T.: Superconductivity above the lowest earth temperature in pressurized sulfur hydride. EPL (Europhysics Letters). 112(3), 37001 (2015)

    Article  ADS  Google Scholar 

  32. Quan, Y., Pickett, W.E.: Van Hove singularities and spectral smearing in high-temperature superconducting H3S. Phys. Rev. B. 93(10), 104526 (2016)

    Article  ADS  Google Scholar 

  33. Mehaddene, T., Kentzinger, E., Hennion, B., Tanaka, K., Numakura, H., Marty, A., et al.: Lattice dynamics and migration enthalpies in CoPt3 and FePd. Phys. Rev. B. 69(2), 024304 (2004)

    Article  ADS  Google Scholar 

  34. Kohn, W.: Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2(9), 393 (1959)

    Article  ADS  Google Scholar 

  35. Miiller, A.P.: Real and virtual Kohn effect in palladium by inelastic neutron scattering. Can. J. Phys. 53(22), 2491–2501 (1975)

    Article  ADS  Google Scholar 

  36. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., Robertson, J.: Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93(18), 185503 (2004)

    Article  ADS  Google Scholar 

  37. Stewart, D.A.: Ab initio investigation of phonon dispersion and anomalies in palladium. New J. Phys. 10(4), 043025 (2008)

    Article  ADS  Google Scholar 

  38. Kim, D.Y., Scheicher, R.H., Mao, H.K., Kang, T.W., Ahuja, R.: General trend for pressurized superconducting hydrogen-dense materials. Proc. Natl. Acad. Sci. 107(7), 2793–2796 (2010)

    Article  ADS  Google Scholar 

  39. McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)

    Article  ADS  Google Scholar 

  40. Dynes, R.C.: McMillan's equation and the Tc of superconductors. Solid State Commun. 10(7), 615–618 (1972)

    Article  ADS  Google Scholar 

  41. Bazhirov, T., Cohen, M.L.: Spin-resolved electron-phonon coupling in FeSe and KFe2Se2. Phys. Rev. B. 86(13), 134517 (2012)

    Article  ADS  Google Scholar 

  42. Bazhirov, T., Cohen, M.L.: Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer. J. Phys. Condens. Matter. 25(10), 105506 (2013)

    Article  ADS  Google Scholar 

  43. Baroni, S., Giannozzi, P., Isaev, E.: Thermal properties of materials from ab-initio quasi-harmonic phonons. arXiv preprint arXiv:1112.4977 (2011)

  44. Boufelfel, A., Emrick, R.M., Falco, C.M.: Magnetism of Fe/Pd superlattices. Phys. Rev. B. 43(16), 13152 (1991)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Algerian ministry of higher education and scientific research, CNEPRU program, under contract number B00L02UN2401 2015 0004

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Boufelfel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boufelfel, A. Hydrogen Effect on Electron-Phonon Interactions in L10 FePd. J Supercond Nov Magn 32, 3125–3133 (2019). https://doi.org/10.1007/s10948-019-5057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5057-9

Keywords

Navigation