Skip to main content
Log in

Improved Electromagnetic Interference Shielding Response of Polyaniline Containing Magnetic Nano-ferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Improvement of electromagnetic interference (EMI) shielding materials with miniaturization of devices is an important area of research in various applications like communication, electronic warfare, defense, and different civilian applications. Nano-crystalline ferrite, MFe2O4 (M = Ni, Zn, and Co), powders have been synthesized by sol-gel citrate nitrate precursor method. The crystalline size of samples was found in the range of 20–45 nm as analyzed by XRD and TEM analysis. Polyaniline/ferrite nano-composites with 50 wt% were synthesized by mechanical blending. The structural and magnetic properties of the nano-particles were characterized by using Rietveld analysis of powder X-ray diffraction and vibrating sample magnetometer (VSM) respectively. Using the Rietveld refinement, the goodness of fit, interatomic distance, Bragg contribution, and R factors have been determined. Ferrites and their nano-composites, under applied magnetic field up to 20 KOe, exhibited the hysteresis loops of ferromagnetic nature with maximum saturation magnetization of 51.68 emu/g shown by CoFe2O4. The electromagnetic shielding parameters (various shielding effectiveness and reflection loss) and microwave absorbing properties were measured in X band frequency region (8.2–12.2 GHz). Nano-composites show promising and enhanced EMI shielding behavior with overall highest SE value of 52 dB shown by CoFe2O4 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng, Y.L., Dai, J.M., Zhu, X.B., Wu, D.J., Sun, Y.P.: Mater Res Bull. 45, 663–667 (2010)

    Google Scholar 

  2. Micheli, D., Pastore, R., Apollo, C., Marchetti, M., Gradoni, G., Primiani, V.M.: IEEE Trans Micr Theory Tech. 59, 2633–2646 (2011)

    ADS  Google Scholar 

  3. Ott, H.W.: Wiley, 2nd edn, New York (1988)

  4. Wilson, P.F., Ma, M.T., Adams, J.W.: IEEE Transactions on Electromagnetic Compatibility. 30(3), 251–259 (1988)

    Google Scholar 

  5. Olmedo L., Hourquebie P., Jousse F.: Wiley. Chichester Vol. 2, (1997)

  6. Ting, T.H., Yu, R.P., Jau, Y.N.: Materials Chemistry and Physics. 126, 364–368 (2011)

    Google Scholar 

  7. Hosseini, S.H., Asadnia, A.: Journal of Nanomaterials. 2012, 1–6 (2012)

    Google Scholar 

  8. Przemyslaw, L., Lukomska, A., Jeziorska, R.: Polimery. 61, 663–669 (2016)

    Google Scholar 

  9. Seong, H.K., Soon, H.J., Sung, W.B., Jun, Y.L., Jin, S.J., Sung, H.J., Myung-Ja, P.: Journal of Applied Polymer Science. 87, 1969–1974 (2003)

    Google Scholar 

  10. Park, K.Y., Lee, S.E., Kim, C.G., Han, J.H.: Composite Structures. 81, 401–406 (2007)

    Google Scholar 

  11. Gairola, S.P., Verma, V., Kumar, L., Dar, M.A., Annapoorni, S., Kotnala, R.K.: Synth. Met. 160, 2315–2318 (2010)

    Google Scholar 

  12. Ismail, M.M., Jaber, N.A.: J. Supercond. Nov. Magn. 31, 1917–1923 (2017)

    Google Scholar 

  13. Lakshmi, K., John, H., Mathew, K.T., Joseph, R., George, K.E.: Acta Mater. 57, 371–375 (2009)

    Google Scholar 

  14. Tang, J., Ma, L., Tian, N., Gan, M.Y., Xu, F.F., Zeng, J.: Mater Sci Eng B. 186, 26–32 (2014)

    Google Scholar 

  15. Liangchao, L., Jiang, J., Xu, F.: Mater Lett. 61, 1091–1096 (2007)

    Google Scholar 

  16. Jiang, J., Ai, L.H.: Mater Lett. 62, 3643–3645 (2008)

    Google Scholar 

  17. Jiang, J., Li, L., Xu, F.: Mater Sci Eng A. 456, 300 (2007)

    Google Scholar 

  18. Lee, S.P., Chen, Y.J., Ho, C.M., Chang, C.P., Hong, Y.S.: Mater Sci Eng B. 143, 1–24 (2007)

    Google Scholar 

  19. Jiang, J., Ai, L.H., Liu, L.Y.: Mater Lett. 64, 888–890 (2010)

    Google Scholar 

  20. Elsayed, A.H., MohyEldin, M.S., Elsyed, A.M., AboElazm, A.H., Younes, E.M., Motaweh, H.A.: Int. J. Electrochem. Sci. 6, 206–221 (2011)

    Google Scholar 

  21. Boeva, Z.A., Sergeyev, V.G.: Polymer Science. 56, 144–153 (2014)

    Google Scholar 

  22. Suryanarayana C, Nortan MG: Plenum Publishing Corporation, (1998)

    Google Scholar 

  23. Ramgir, N.S., Hwang, Y.K., Mulla, I.S., Chang, J.S.: Solid State Sciences. 8, 359–362 (2006)

    ADS  Google Scholar 

  24. Carbonin, S., Martignago, F., Menegazzo, G., Negro, A.: Phys. Chem. Miner. 29, 503–514 (2002)

    ADS  Google Scholar 

  25. Berkowitz, A.E., Schuele, W.: J. Appl. Phys. 30, 134–139 (1959)

    ADS  Google Scholar 

  26. Perez, O.P., Sasaki, H., Kasuya, A., Jeyadevan, B., Tohji, K., Hihara, T., Sumiyama, K.: J. Appl. Phys. 91, 6958–6963 (2002)

    ADS  Google Scholar 

  27. Mott, N.F.: Phil. Mag. 19, 835 (1969)

    ADS  Google Scholar 

  28. Hemeda, O.M., Barakat, M.M.: Journal of Magnetism and Magnetic Materials. 223, 127–132 (2001)

    ADS  Google Scholar 

  29. Rafeeq, S.N., Mukhils, M.M., Sulaiman, M.A.: J. Magn. 22(3), 406–413 (2017)

    Google Scholar 

  30. Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: J. Molecular Structure. 1076, 55–62 (2014)

    ADS  Google Scholar 

  31. Lia, D.Y., Sun, Y.K., Gao, P.Z., Zhang, X.L., Ge, H.L.: Ceram. Int. 40, 16529 (2014)

    Google Scholar 

  32. O'Neill, H., Nevnorsky, A.: American Mineralogist. 6E, 181–194 (1983)

    Google Scholar 

  33. Wang, C., Shen, Y., Wang, X., Zhang, H., Xie, A.: Mater. Sci. Semiconductor Proc. 16, 77–82 (2013)

    Google Scholar 

  34. Jacobo, S.E., Aphesteguy, J.C., Anton, R.L., Schegoleva, N.N., Kurlyandskaya, G.V.: European Polymer Journal. 43, 1333–1346 (2007)

    Google Scholar 

  35. Konyushenko, E.N., Kazantseva, N.E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M.M., Demicheva, O.V., Prokeš, J.: Journal of Magnetism and Magnetic Materials. 320, 231–240 (2008)

    ADS  Google Scholar 

  36. Yavuz, Ö., Ram, M.K., Aldissi, M., Poddar, P., Hariharan, S.: Journal of Materials Chemistry. 15, 810–817 (2005)

    Google Scholar 

  37. Li, L., Xiang, C., Liang, X., Hao, B.: Synth. Met. 160, 28–34 (2010)

    Google Scholar 

  38. Khafagy, R.M.: J. Alloys Compd. 509, 9849–9857 (2011)

    Google Scholar 

  39. Song, Q., Zhang, Z.J.: J. Amer. Chem. Soc. 126, 6164–6168 (2004)

    Google Scholar 

  40. Singh, K., Ohlan, A., Saini, P., Dhawan, S.K.: Polym. Adv. Technol. 19, 229 (2008)

    Google Scholar 

  41. Gholampoor, M., Movassagh, F., Salimkhani, H.: Solid State Sci. 64, 51–61 (2017)

    ADS  Google Scholar 

  42. Mahmoodi, M., Arjmand, M., Sundararaj, U., Park, S.: Carbon. 50, 1455–1464 (2012)

    Google Scholar 

  43. Ismail, M.M., Rafeeq, S.N., Sulaiman, J.M., Mandal, A.: Applied Physics A. 124, 380 (2018)

    Google Scholar 

  44. Ding, Y., Liao, Q., Liu, S., Guo, H., Sun, Y., Zhang, G., Zhang, Y.: Sci. Rep. 6, 1–9 (2016)

    Google Scholar 

  45. Gandhi, N., Singh, K., Ohlan, A., Singh, D.P., Dhawan, S.K.: Composites Science and Technology. 71, 1754–1760 (2011)

    Google Scholar 

  46. Khairy, M.: Synthetic Metals. 189, 34–41 (2014)

    Google Scholar 

  47. Bateer, B., Zhang, J., Zhang, H., Zhang, X., Wang, C., Qi, H.: J. Electron. Mater. 47, 292–298 (2018)

    ADS  Google Scholar 

  48. Yan, F., Guo, D., Zhang, S., Li, C., Zhu, C., Zhang, X., Chen, Y.: Nanoscale. 10, 2697–2703 (2018)

    Google Scholar 

  49. Hosseinia, S.H., Mohsenib, S.H., Asadniac, A., Kerdarid, H.: Journal of Alloys and Compounds. 509, 4682–4687 (2011)

    Google Scholar 

  50. Wang, W., Gumfekar, S.P., Jiao, Q., Zhao, B.: J. Mater. Chem. C. 1, 2851–2859 (2013)

    Google Scholar 

  51. Aphesteguy, J.C., Damiani, A., DiGiovanni, D., Jacobo, S.E.: Physica B. 407, 3168–3171 (2012)

    ADS  Google Scholar 

  52. Ali, N.N., Atassi, Y., Salloum, A., Charba, A., Malki, A., Jafarian, M.: Materials Chemistry and Physics. 211, 79–87 (2018)

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Physics Department, Hindu College, University of Delhi and Head, Department of Physics and Astrophysics, University of Delhi. We acknowledge the University Science Instrumental Centre (USIC), Prof. Vinay Gupta, University of Delhi and National Physical Laboratory (NPL), New Delhi, for the characterization facilities and their valuable suggestions regarding the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Verma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Ohlan, A., Kumar, P. et al. Improved Electromagnetic Interference Shielding Response of Polyaniline Containing Magnetic Nano-ferrites. J Supercond Nov Magn 33, 1187–1198 (2020). https://doi.org/10.1007/s10948-019-05343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05343-x

Keywords

Navigation