Skip to main content
Log in

Doping Dependence of Electromagnetic Response in Cuprate Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The study of the electromagnetic response in cuprate superconductors plays a crucial role in the understanding of the essential physics of these materials. Here the doping dependence of the electromagnetic response in cuprate superconductors is studied within the kinetic energy–driven superconducting mechanism. The kernel of the response function is evaluated based on the linear response approximation for a purely transverse vector potential and can be broken up into its diamagnetic and paramagnetic parts. In particular, this paramagnetic part exactly cancels the corresponding diamagnetic part in the normal-state, and then the Meissner effect is obtained within the entire superconducting phase. Following this kernel of the response function, the electromagnetic response calculation in terms of the specular reflection model qualitatively reproduces many of the striking features observed in the experiments. In particular, the local magnetic field profile follows an exponential law, while the superfluid density exhibits the nonlinear temperature behavior at the lowest temperatures, followed by the linear temperature dependence extending over the most of the superconducting temperature range. Moreover, the maximal value of the superfluid density occurs at around the critical doping δcritical ∼ 0.16 and then decreases in both lower doped and higher doped regimes. The theory also shows that the nonlinear temperature dependence of the superfluid density at the lowest temperatures can be attributed to the nonlocal effects induced by the d-wave gap nodes on the electron Fermi surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. See, e.g., Schrieffer, J.R.: Theory of Superconductivity, Addison-Wesley, San Francisco (1964)

  2. See, e.g., In: Bonn, B.A., Hardy, W.N., Ginsberg, D.M. (eds.): Physical Properties of High Temperature Superconductors, V, World Scientific, Singapore (1996)

  3. See, e.g., Fujita, M., Hiraka, H., Matsuda, M., Matsuura, M., Tranquada, J.M., Wakimoto, S., Xu, G.Y., Yamada, K.: J. Phys. Soc. Jpn., 81, 011007 (2012)

    ADS  Google Scholar 

  4. Bednorz, J.G., Müller, K.A.: Z. Phys. B 64, 189 (1986)

    ADS  Google Scholar 

  5. See, e.g., Tsuei, C.C., Kirtley, J.R.: Rev. Mod. Phys., 72, 969 (2000)

    ADS  Google Scholar 

  6. Uemura, Y.J., Luke, G.M., Sternlieb, B.J., Brewer, J.H., Carolan, J.F., Hardy, W.N., Kadono, R., Kempton, J.R., Kiefl, R.F., Kreitzman, S.R., Mulhern, P., Riseman, T.M., Williams, D.Ll., Yang, B.X., Uchida S., Takagi, H., Gopalakrishnan, J., Sleight, A.W., Subramanian, M.A., Chien, C.L., Cieplak, M.Z., Xiao, G., Lee, V.Y., Statt, B.W., Stronach, C.E., Kossler, W.J., Yu, X.H.: Phys. Rev. Lett. 62, 2317 (1989)

    ADS  Google Scholar 

  7. Hardy, W.N., Bonn, D.A., Morgan, D.C., Liang, R., Zhang, K.: Phys. Rev. Lett. 70, 3999 (1993)

    ADS  Google Scholar 

  8. Khasanov, R., Eshchenko, D.G., Luetkens, H., Morenzoni, E., Prokscha, T., Suter, A., Garifianov, N., Mali, M., Roos, J., Conder, K., Keller, H.: Phys. Rev. Lett. 92, 057602 (2004)

    ADS  Google Scholar 

  9. Suter, A., Morenzoni, E., Khasanov, R., Luetkens, H., Prokscha, T., Garifianov, N.: Phys. Rev. Lett. 92, 087001 (2004)

    ADS  Google Scholar 

  10. Božović, I., He, X., Wu, J., Bollinger, A.T.: Nature 536, 309 (2016)

    ADS  Google Scholar 

  11. Brewer, J.H., Stubbs, S.L., Liang, R., Bonn, D.A., Hardy, W.N., Sonier, J.E., Andrew MacFarlane, W., Peets, D.C.: Sci. Rep. 5, 14156 (2015)

    ADS  Google Scholar 

  12. Deepwell, D., Peets, D.C., Truncik, C.J.S., Murphy, N.C., Kennett, M.P., Huttema, W.A., Liang, R., Bonn, D.A., Hardy, W.N., Broun, D.M.: Phys. Rev. B 88, 214509 (2013)

    ADS  Google Scholar 

  13. Khasanov, R., Kondo, T., Strässle, S., Heron, D.O.G., Kaminski, A., Keller, H., Lee, S.L., Takeuchi, T.: Phys. Rev. B 79(R), 180507 (2009)

    ADS  Google Scholar 

  14. Broun, D.M., Huttema, W.A., Turner, P.J., Özcan, S., Morgan, B., Liang, R., Hardy, W.N., Bonn, D.A.: Phys. Rev. Lett. 99, 237003 (2007)

    ADS  Google Scholar 

  15. Panagopoulos, C., Rainford, B.D., Cooper, J.R., Lo, W., Tallon, J.L., Loram, J.W., Betouras, J., Wang, Y.S., Chu, C.W.: Phys. Rev. B 60, 14617 (1999)

    ADS  Google Scholar 

  16. Lemberger, T.R., Hetel, I., Tsukada, A., Naito, M., Randeria, M.: Phys. Rev. B 83(R), 140507 (2011)

    ADS  Google Scholar 

  17. Bernhard, C., Tallon, J.L., Blasius, Th., Golnik, A., Niedermeyer, Ch.: Phys. Rev. Lett. 86, 1614 (2001)

    ADS  Google Scholar 

  18. Lee-Hone, N.R., Dodge, J.S., Broun, D.M.: Phys. Rev. B 96, 024501 (2017)

    ADS  Google Scholar 

  19. Sharapov, S.G., Carbotte, J.P.: Phys. Rev. B 73, 094519 (2006)

    ADS  Google Scholar 

  20. Sheehy, D.E., Davis, T.P., Franz, M.: Phys. Rev. B 70, 054510 (2004)

    ADS  Google Scholar 

  21. Kosztin, I., Legget, A.J.: Phys. Rev. Lett. 79, 135 (1997)

    ADS  Google Scholar 

  22. Yip, S.K., Sauls, J.: Phys. Rev. Lett. 69, 2264 (1992)

    ADS  Google Scholar 

  23. Jackson, T.J., Riseman, T.M., Forgan, E.M., Glückler, H., Prokscha, T., Morenzoni, E., Pleines, M., Niedermayer, Ch., Schatz, G., Luetkens, H., Litterst, J.: Phys. Rev. Lett. 84, 4958 (2000)

    ADS  Google Scholar 

  24. Kamal, S., Liang, R., Hosseini, A., Bonn, D.A., Hardy, W.N.: Phys. Rev. B 58, R8933 (1998)

    ADS  Google Scholar 

  25. Lee, S.-F., Morgan, D.C., Ormeno, R.J., Broun, D.M., Doyle, R.A., Waldram, J.R., Kadowaki, K.: Phys. Rev. Lett. 77, 735 (1996)

    ADS  Google Scholar 

  26. Feng, S., Huang, Z., Zhao, H.: Physica C 470, 1968 (2010)

    ADS  Google Scholar 

  27. Krzyzosiak, M., Huang, Z., Feng, S., Gonczarek, R.: Physica C 470, 407 (2010)

    ADS  Google Scholar 

  28. Feng, S.: Phys. Rev. B 68, 184501 (2003)

    ADS  Google Scholar 

  29. Feng, S., Ma, T., Guo, H.: Physica C 436, 14 (2006)

    ADS  Google Scholar 

  30. Feng, S., Zhao, H., Huang, Z.: Phys. Rev. B 85, 054509 (2012)

    ADS  Google Scholar 

  31. Feng, S., Zhao, H., Huang, Z.: Phys. Rev. B 85(E), 099902 (2012)

    ADS  Google Scholar 

  32. See, e.g., Feng, S., Lan, Y., Zhao, H., Kuang, L., Qin, L., Ma, X.: Int. J. Mod. Phys. B 29, 1530009 (2015)

    Google Scholar 

  33. Feng, S., Kuang, L., Zhao, H.: Phys. C 517, 5 (2015)

    ADS  Google Scholar 

  34. Fukuyama, H., Ebisawa, H., Wada, Y.: Prog. Theor. Phys. 42, 494 (1969)

    ADS  Google Scholar 

  35. Fukuyama, H.: Prog. Theor. Phys. 42, 1284 (1969)

    ADS  Google Scholar 

  36. Misawa, S.: Phys. Rev. B 49, 6305 (1994)

    ADS  Google Scholar 

  37. Kostyrko, T., Micnas, R., Chao, K.A.: Phys. Rev. B 49, 6158 (1994)

    ADS  Google Scholar 

  38. See, e.g., Kastner, M.A., Birgeneau, R.J., Shirane, G., Endoh, Y.: Rev. Mod. Phys. 70, 897 (1998)

    ADS  Google Scholar 

  39. Anderson, P.W.: Science 235, 1196 (1987)

    ADS  Google Scholar 

  40. Feng, S., Qin, J., Ma, T.: J. Phys.: Condens. Matter 16, 343 (2004)

    ADS  Google Scholar 

  41. Feng, S., Su, Z.B., Yu, L.: Phys. Rev. B 49, 2368 (1994)

    ADS  Google Scholar 

  42. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  Google Scholar 

  43. Eliashberg, G.M.: Sov. Phys. JETP 11, 696 (1960)

    Google Scholar 

  44. McMillan, W.L., Rowell, J.M.: Phys. Rev. Lett. 14, 108 (1965)

    ADS  Google Scholar 

  45. Feng, S., Wu, J.B., Su, Z.B., Yu, L.: Phys. Rev. B 47, 15192 (1993)

    ADS  Google Scholar 

  46. Gao, D., Mou, Y., Liu, Y., Tan, S., Feng, S.: Phil. Mag. 99, 752 (2019)

    ADS  Google Scholar 

  47. Mou, Y., Feng, S.: Phil. Mag. 97, 3361 (2017)

    ADS  Google Scholar 

  48. Jing, P., Liu, Y., Zhao, H., Kuang, L., Feng, S.: Phil. Mag. Lett. 97, 206 (2017)

    ADS  Google Scholar 

  49. Feng, S., Gao, D., Zhao, H.: Phil. Mag. 96, 1245 (2016)

    ADS  Google Scholar 

  50. Zhao, H., Gao, D., Feng, S.: Physica C 534, 1 (2017)

    ADS  Google Scholar 

  51. Gao, D., Liu, Y., Zhao, H., Mou, Y., Feng, S.: Physica C 551, 72 (2018)

    ADS  Google Scholar 

  52. Zhao, H., Mou, Y., Feng, S.: J. Supercond. Nov. Magn. 31, 683 (2018)

    Google Scholar 

  53. Feng, S., Gao, D., Liu, Y., Mou, Y., Tan, S.: J. Supercond. Nov. Magn., in the press. https://doi.org/10.1007/s10948-019-5011-x (2019)

    Google Scholar 

  54. See, e.g., Mahan, G.D.: Many-Particle Physics, Plenum Press, New York (1981)

  55. Liu, Y., Feng, S.: unpublised

  56. See, e.g., Abrikosov, A.A.: Fundamentals of the Theory of Metals, Elsevier Science Publishers B. V (1988)

  57. See, e.g., Tinkham, M.: Introduction to Superconductivity, Appendix 3 McGraw-Hill (1996)

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China under Grant No. 2016YFA0300304 and the National Natural Science Foundation of China under Grant Nos. 11574032 and 11734002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Mou, Y. & Feng, S. Doping Dependence of Electromagnetic Response in Cuprate Superconductors. J Supercond Nov Magn 33, 69–79 (2020). https://doi.org/10.1007/s10948-019-05279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05279-2

Keywords

Navigation