Skip to main content
Log in

Effect of Fe and Ti Substitution Doping on Magnetic Property of Monolayer CrSi2: a First-Principle Investigation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

First-principle calculations based on spin-polarized density functional theory were performed to investigate the effect of Fe and Ti substitution doping on magnetic property of monolayer CrSi2. The electronic structures, binding energy, magnetic property, total and partial density of states, and spin density of monolayer CrSi2 are scientifically studied. Calculated binding energy reveals that Fe-doped monolayer CrSi2 is more stable than Ti-doped monolayer CrSi2. The local magnetic moment of Fe and Ti atom all decrease compared with atomic moment in free gas phase due to variation of bond interaction and charge transfer. The density of states and spin-density results indicated that local magnetic moment of Fe atom is larger than Ti atom, leading to total magnetic moment of Fe-doped monolayer CrSi2 is bigger than Ti-doped monolayer CrSi2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  2. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: The new twodimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  Google Scholar 

  3. Yan Voon, L.C.L., Guzmán-Verri, G. G.: Issilicone the next graphene. MRS Bull. 39, 366–373 (2014)

    Article  Google Scholar 

  4. Kara, A., Enriquez, H., Seitsonen, A.P., Lew Yan Voon, L.C., Vizzini, S., Aufray, B., Oughaddou, H.: A review on silicene—new candidate for electronics. Sur. Sci. Rep. 67, 1–18 (2012)

    Article  Google Scholar 

  5. Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)

    Article  Google Scholar 

  6. Pakdel, A., Zhi, C., Bando, Y., Golberg, D.: Low-dimensional boron nitride nanomaterials. Matet. Today 15, 256–265 (2012)

    Article  Google Scholar 

  7. Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  8. Butler, S.Z., et al.: Progress, challenges, and opportunities in twodimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    Article  Google Scholar 

  9. Han, N.N., Liu, H.S., Zhao, J.J.: Novel magnetic monolayers of transition metal silicide. J. Supercond. Nov. Magn. 28, 1755–1758 (2015)

    Article  Google Scholar 

  10. Chen, S.B., Chen, Y., et al.: Magnetism and optical property of Mn-doped monolayer CrSi2 by first-principle study. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-0174523-5 (2017)

  11. Wang, X.Q., Li, H.D., Wang, J.T.: Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys. Chem. Chem. Phys. 14, 3031–3036 (2012)

    Article  Google Scholar 

  12. Zhang, C.W., Yan, S.S.: First-principles study of ferromagnetism in twodimensional silicene with hydrogenation. J. Phys. Chem. C 116, 4163–4166 (2012)

    Article  Google Scholar 

  13. Kaloni, T.P., Gangopadhyay, S., Singh, N., Jones, B., Schwingenschlögl, U.: Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 88, 235418–1–235418-4 (2013)

    Article  ADS  Google Scholar 

  14. Krijn, M.P.C.M., Eppenga, R.: First-principles electronic structure and optical properties of CrSi2. Phys. Rev. B 44, 9042–9044 (1991)

    Article  ADS  Google Scholar 

  15. Bellani, V., Guizzetti, G., Marabelli, F., et al.: Theory and experiment on the optical properties of CrSi2. Phys. Rev. B 46, 9380–9389 (1992)

    Article  ADS  Google Scholar 

  16. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  19. Payne, M.C., et al.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1064–1096 (1992)

    Article  Google Scholar 

  20. Clark, S.J., et al.: First principles methods using CASTEP. Z. Kristall. 220, 567–570 (2005)

    Google Scholar 

  21. Kresse, G., Joubert, D.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  22. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  23. Chen, Q, Wang, J.L.: Structural, electronic, and magnetic properties of TMZn11O12 and TM2Zn10O12 clusters (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). Chem. Phys. Lett. 474, 336–341 (2009)

    Article  ADS  Google Scholar 

  24. Vaz, C.A.F., Bland, J.A.C., Lauhoff, G: Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501–1–056501-78 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the cloud computing platform of Guizhou University for computing support.

Funding

This work was supported by the key projects of the tripartite foundation of the Guizhou Science and Technology Department (Grant No. [2015]7696) and Guizhou College Student Innovation Entrepreneurship Training Program (Grant No. 201710667017) by major projects for the creative research groups of Guizhou Province of China (Grant No. [2016]048), by the innovation team of Anshun University (Grant No. 2015PT02), and by the Natural Science Foundation of the Science and Technology Department of Guizhou Province of China (Grant No. [2010]2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhou, S., Yan, W. et al. Effect of Fe and Ti Substitution Doping on Magnetic Property of Monolayer CrSi2: a First-Principle Investigation. J Supercond Nov Magn 32, 1341–1346 (2019). https://doi.org/10.1007/s10948-018-4815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4815-4

Keywords

Navigation