Skip to main content
Log in

The Effects of Ferromagnetic Disks on AC Losses in HTS Pancake Coils with Nonmagnetic and Magnetic Substrates

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Performance improvement of high-temperature superconducting (HTS) pancake coil is of paramount importance for its application in electrical facilities. In this paper, the utilization of ferromagnetic disks including weak magnetic material and strong magnetic material is investigated through numerical simulations for the aim of reducing the AC loss. Both the nonmagnetic and magnetic substrates are considered for the rare-earth-barium-copper-oxide coated conductor tapes wounded into the pancake coil. In order to analyze the influences of ferromagnetic disks on the maximum allowable currents and AC losses of nonmagnetic substrate-based coil and magnetic substrate-based coil, a self-consistent model based on the A-formulation is adopted to calculate the critical current and a 2D axisymmetric model built on the H-formulations is established to calculate the AC loss. According to the simulation results, it is found that ferromagnetic disks especially the strong magnetic disk are slightly detrimental to the critical currents of the pancake coils. Nevertheless, the presence of large background field weakens the effects of ferromagnetic disks. The simulation results also indicate that strong magnetic disks achieve about 50% reduction of the AC loss in the nonmagnetic substrate-based coil, and the AC loss of the magnetic substrate-based coil can be increased or reduced with strong magnetic disks depending on the applied current amplitude. The utilization of strong magnetic disks leads to the enhancement of the AC loss in the magnetic substrate-based coil at lower current and to the reduction of it at larger current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang, Y., Duan, S., Ren, Y., Jiang, Y., Feng, L., Zhang, X., Chai, H., Kuang, M., Wu, J., Yang, X.: Design and development of a cryogen-free superconducting prototype generator with YBCO field windings. IEEE Trans. Appl. Supercond. 26, 1 (2016)

    Google Scholar 

  2. Ali, M.H., Wu, B., Dougal, R.A.: An overview of SMES applications in power and energy systems. IEEE Trans. Sustain. Energy 1, 38 (2010)

    Article  ADS  Google Scholar 

  3. Pan, A.V., MacDonald, L., Baiej, H., Cooper, P.: Theoretical consideration of superconducting coils for compact superconducting magnetic energy storage systems. IEEE Trans. Appl. Supercond. 26, 1 (2016)

    Google Scholar 

  4. Weijers, H.W., Trociewitz, U.P., Markiewicz, W.D., Jiang, J., Myers, D., Hellstrom, E.E., Xu, A., Jaroszynski, J., Noyes, P., Viouchkov, Y., Larbalestier, D.C.: High field magnets with HTS conductors. IEEE Trans. Appl. Supercond. 20, 576 (2010)

    Article  ADS  Google Scholar 

  5. Van der Laan, D.C., Lu, X., Goodrich, L.F.: Compact GdBa2Cu3O7–δ coated conductor cables for electric power transmission and magnet applications. Supercond. Sci. Technol. 24, 042001 (2011)

    Article  ADS  Google Scholar 

  6. Liu, G., Zhang, G., Jing, L., Yu, H., Ai, L., Yuan, W., Li, W.: Influence of substrate magnetism on frequency-dependent transport loss in HTS-coated conductors. IEEE Trans. Appl. Supercond. 27, 1 (2017)

    Google Scholar 

  7. Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T., Li, X.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29, 572 (2004)

    Article  Google Scholar 

  8. Hazelton, D.W., Selvamanickam, V., Duval, J.M., Larbalestier, D.C., Markiewicz, W.D., Weijers, H.W., Holtz, R.L.: Recent developments in 2G HTS coil technology. IEEE Trans. Appl. Supercond. 19, 2218 (2009)

    Article  ADS  Google Scholar 

  9. Xia, J., Bai, H., Lu, J., Gavrilin, A.V., Zhou, Y., Weijers, H.W.: Electromagnetic modeling of REBCO high field coils by the H-formulation. Supercond. Sci. Technol. 28, 125004 (2015)

    Article  ADS  Google Scholar 

  10. Polak, M., Usak, E., Jansak, L., Demencik, E., Levin, G.A., Barnes, P.N., Wehler, D., Moenter, B.: Coupling losses and transverse resistivity of multifilament YBCO coated superconductors. J. Phys.:. Conf. Ser. 43, 591 (2006)

    ADS  Google Scholar 

  11. Carr, W., Oberly, C.: Filamentary YBCO conductors for AC applications. IEEE Trans. Appl. Supercond. 9, 1475 (1999)

    Article  ADS  Google Scholar 

  12. Lakshmi, L.S., Thakur, K.P., Staines, M.P., Badcock, R.A., Long, N.J.: Magnetic AC loss characteristics of 2G Roebel cable. IEEE Trans. Appl. Supercond. 19, 3361 (2009)

    Article  ADS  Google Scholar 

  13. Grilli, F., Zermeño, V., Vojenčiak, M., Pardo, E., Kario, A., Goldacker, W.: AC losses of pancake coils made of Roebel cable. IEEE Trans. Appl. Supercond. 23, 5900205 (2013)

    Article  ADS  Google Scholar 

  14. Levin, G.A., Barnes, P.N.: Concept of multiply connected superconducting tapes. IEEE Trans. Appl. Supercond. 15, 2158 (2005)

    Article  ADS  Google Scholar 

  15. Ainslie, M.D., Yuan, W., Flack, T.J.: Numerical analysis of AC loss reduction in HTS superconducting coils using magnetic materials to divert flux. IEEE Trans. Appl. Supercond. 23, 4700104 (2013)

    Article  Google Scholar 

  16. Farinon, S., Fabbricatore, P., Gomory, F., Greco, M., Seiler, E.: Modeling of current density distributions in critical state by commercial FE codes. IEEE Trans. Appl. Supercond. 15, 2867 (2005)

    Article  ADS  Google Scholar 

  17. He, A., Xue, C., Yong, H., Zhou, Y.: Effect of soft ferromagnetic substrate on ac loss in 2G HTS power transmission cables consisting of coated conductors. Supercond. Sci. Technol. 27, 025004 (2014)

    Article  ADS  Google Scholar 

  18. Wan, X.X., Huang, C.G., Yong, H.D., Zhou, Y.H.: Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current. AIP Adv. 5, 117139 (2015)

    Article  ADS  Google Scholar 

  19. Yong, H., Zhao, M., Jing, Z., Zhou, Y.: Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure. J. Appl. Phys. 116, 123911 (2014)

    Article  ADS  Google Scholar 

  20. Ma, G.-T.: Hysteretic ac loss in a coated superconductor subjected to oscillating magnetic fields: ferromagnetic effect and frequency dependence. Supercond. Sci. Technol. 27, 065011 (2014)

    Article  ADS  Google Scholar 

  21. Krüger, P., Grilli, F., Vojenčiak, M., Zermeño, V.M.R., Demencik, E., Farinon, S.: Superconductor/ferromagnet heterostructures exhibit potential for significant reduction of hysteretic losses. Appl. Phys. Lett. 102, 202601 (2013)

    Article  ADS  Google Scholar 

  22. Gömöry, F., Vojenčiak, M., Pardo, E., Solovyov, M., Šouc, J.: AC losses in coated conductors. Supercond. Sci. Technol. 23, 034012 (2010)

    Article  ADS  Google Scholar 

  23. Gömöry, F., Vojenčiak, M., Pardo, E., Šouc, J.: Magnetic flux penetration and AC loss in a composite superconducting wire with ferromagnetic parts. Supercond. Sci. Technol. 22, 034017 (2009)

    Article  ADS  Google Scholar 

  24. Majoros, M., Glowacki, B.A., Campbell, A.M.: Transport ac losses and screening properties of Bi-2223 multifilamentary tapes covered with magnetic materials. Physica C 338, 251 (2000)

    Article  ADS  Google Scholar 

  25. Ogawa, J., Fukui, S., Oka, T., Sakurai, T., Sano, Y., Tada, H., Yoshii, Y.: Experimental investigation of AC loss characteristics of stacked HTS Tapes in an iron core. IEEE Trans. Appl. Supercond. 26, 1 (2016)

    Article  Google Scholar 

  26. Lai, L., Gu, C., Qu, T., Zhang, M., Li, Y., Liu, R., Coombs, T., Han, Z.: Simulation of AC loss in small HTS coils with iron core. IEEE Trans. Appl. Supercond. 25, 1 (2015)

    Article  Google Scholar 

  27. Pardo, E., Šouc, J., Vojenčiak, M.: AC loss measurement and simulation of a coated conductor pancake coil with ferromagnetic parts. Supercond. Sci. Technol. 22, 075007 (2009)

    Article  ADS  Google Scholar 

  28. Ainslie, M.D., Hu, D., Zou, J., Cardwell, D.A.: Simulating the in-field AC and DC performance of high-temperature superconducting coils. IEEE Trans. Appl. Supercond. 25, 1 (2015)

    Article  Google Scholar 

  29. Liu, G., Zhang, G., Jing, L., Yu, H.: Numerical study on AC loss reduction of stacked HTS tapes by optimal design of flux diverter. Supercond. Sci. Technol. 30, 125014 (2017)

    Article  ADS  Google Scholar 

  30. Suenaga, M., Li, Q.: Effects of magnetic substrates on ac losses of Y Ba 2 Cu 3 O 7 films in perpendicular ac magnetic fields. Appl. Phys. Lett. 88, 262501 (2006)

    Article  ADS  Google Scholar 

  31. Mawatari, Y.: Magnetic field distributions around superconducting strips on ferromagnetic substrates. Phys. Rev. B 77, 104505 (2008)

    Article  ADS  Google Scholar 

  32. Sanchez, A., Del-Valle, N., Navau, C., Chen, D.X.: Influence of magnetic substrate in the transport critical current of superconducting tapes. Appl. Phys. Lett. 97, 072504 (2010)

    Article  ADS  Google Scholar 

  33. Zhang, M., Kvitkovic, J., Kim, J.H., Kim, C., Pamidi, S., Coombs, T.: Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate. Appl. Phys. Lett. 101, 102602 (2012)

    Article  ADS  Google Scholar 

  34. Zhang, M., Kvitkovic, J., Kim, J.H., Kim, C.H., Pamidi, S.V., Coombs, T.A.: Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate. Appl. Phys. Lett. 101, 102602 (2012)

    Article  ADS  Google Scholar 

  35. Šouc, J., Pardo, E., Vojenčiak, M., Gömöry, F.: Theoretical and experimental study of AC loss in high temperature superconductor single pancake coils. Supercond. Sci. Technol. 22, 015006 (2008)

    Article  ADS  Google Scholar 

  36. Genenko, Y.A., Snezhko, A., Freyhardt, H.C.: Overcritical states of a superconductor strip in a magnetic environment. Phys. Rev. B 62, 3453 (2000)

    Article  ADS  Google Scholar 

  37. Erdogan, M., Tunc, S., Inanir, F.: AC loss analysis of HTS pancake coil of coated superconductors with ferromagnetic substrate. J. Supercond. Novel. Magn. 30, 1993 (2016)

    Article  Google Scholar 

  38. Li, S., Chen, D.X., Fang, J.: Transport ac losses of a second-generation HTS tape with a ferromagnetic substrate and conducting stabilizer. Supercond. Sci. Technol. 28, 125011 (2015)

    Article  ADS  Google Scholar 

  39. Ainslie, M.D., Flack, T.J., Campbell, A.M.: Calculating transport AC losses in stacks of high temperature superconductor coated conductors with magnetic substrates using FEM. Physica C 472, 50 (2012)

    Article  ADS  Google Scholar 

  40. Zermeno, V.M., Abrahamsen, A.B., Mijatovic, N., Jensen, B.B., Sørensen, M.P.: Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications. J. Appl. Phys. 114, 173901 (2013)

    Article  ADS  Google Scholar 

  41. Thakur, K.P., Raj, A., Brandt, E.H., Kvitkovic, J., Pamidi, S.V.: Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable. Supercond. Sci. Technol. 24, 065024 (2011)

    Article  ADS  Google Scholar 

  42. Haynes, W.M.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2014)

    Google Scholar 

  43. Lu, J., Choi, E.S., Zhou, H.D.: Physical properties of Hastelloy®C-276™at cryogenic temperatures. J. Appl. Phys. 103, 064908 (2008)

    Article  ADS  Google Scholar 

  44. Lakshmi, L.S., Staines, M.P., Badcock, R.A., Long, N.J., Majoros, M., Collings, E.W., Sumption, M.D.: Frequency dependence of magnetic ac loss in a Roebel cable made of YBCO on a Ni–W substrate. Supercond. Sci. Technol. 23, 085009 (2010)

    Article  ADS  Google Scholar 

  45. Zermeño, V., Sirois, F., Takayasu, M., Vojenciak, M., Kario, A., Grilli, F.: A self-consistent model for estimating the critical current of superconducting devices. Supercond. Sci. Technol. 28, 085004 (2015)

    Article  ADS  Google Scholar 

  46. Zermeño, V.M., Quaiyum, S., Grilli, F.: Open-source codes for computing the critical current of superconducting devices. IEEE Trans. Appl. Supercond. 26, 1 (2016)

    Article  Google Scholar 

  47. Liu, D., Xia, J., Yong, H., Zhou, Y.: Estimation of critical current distribution in Bi2Sr2CaCu2Ox cables and coils using a self-consistent model. Supercond. Sci. Technol. 29, 065020 (2016)

    Article  ADS  Google Scholar 

  48. Miyagi, D., Yunoki, Y., Umabuchi, M., Takahashi, N., Tsukamoto, O.: Measurement of magnetic properties of Ni-alloy substrate of HTS coated conductor in LN2. Physica C 468, 1743 (2008)

    Article  ADS  Google Scholar 

  49. Nguyen, D.N., Ashworth, S.P., Willis, J.O., Sirois, F., Grilli, F.: A new finite-element method simulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes. Supercond. Sci. Technol. 23, 025001 (2010)

    Article  ADS  Google Scholar 

  50. Brambilla, R., Grilli, F., Martini, L.: Development of an edge-element model for AC loss computation of high-temperature superconductors. Supercond. Sci. Technol. 20, 16 (2007)

    Article  ADS  Google Scholar 

  51. Hong, Z., Campbell, A.M., Coombs, T.A.: Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 19, 1246 (2006)

    Article  ADS  Google Scholar 

  52. Sirois, F., Dione, M., Roy, F., Grilli, F., Dutoit, B.: Evaluation of two commercial finite element packages for calculating AC losses in 2-D high temperature superconducting strips. J. Phys.: Conf. Ser. 97, 012030 (2008)

    Google Scholar 

  53. Kajikawa, K., Hayashi, T., Yoshida, R., Iwakuma, M., Funaki, K.: Numerical evaluation of AC losses in HTS wires with 2D FEM formulated by self magnetic field. IEEE Trans. Appl. Supercond. 13, 3630 (2003)

    Article  ADS  Google Scholar 

  54. Xia, J., Yong, H., Zhou, Y.: Numerical simulations of the alternating current loss in round high-temperature superconducting wire with a hole defect. J. Appl. Phys. 114, 093905 (2013)

    Article  ADS  Google Scholar 

  55. Bishop, J.: Tables of the frequency dependence of permeability for the Polivanov domain model. J. Phys. D: Appl. Phys. 4, 1235 (1971)

    Article  ADS  Google Scholar 

  56. Samantaray, B., Singh, A.K., Perumal, A., Ranganathan, R., Mandal, P.: Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure. AIP Adv. 5, 067157 (2015)

    Article  ADS  Google Scholar 

  57. Zola, D., Gömöry, F., Polichetti, M., Strýček, F., Seiler, E., Hušek, I., Kováč, P., Pace, S.: A study of coupling loss on bi-columnar BSCCO/Ag tapes through ac susceptibility measurements. Supercond. Sci. Technol. 17, 501 (2004)

    Article  ADS  Google Scholar 

Download references

Funding

The authors acknowledge the supports from the National Natural Science Foundation of China (nos. 11327802 and 11472120), 111 Project (B14044), the Fundamental Research Funds for the Central Universities (lzujbky-2017-k18), and the China Postdoctoral Science Foundation (no. 2017M610064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Yong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, M., Yong, H., Xia, J. et al. The Effects of Ferromagnetic Disks on AC Losses in HTS Pancake Coils with Nonmagnetic and Magnetic Substrates. J Supercond Nov Magn 32, 499–510 (2019). https://doi.org/10.1007/s10948-018-4737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4737-1

Keywords

Navigation