Skip to main content
Log in

Infrared Spectroscopic Study of Magnetic Behavior of Dysprosium Doped Magnetite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Dysprosium doped magnetite (Fe3−xDyxO4 with x = 0.0–0.1) nanoparticles have been synthesized using the co-precipitation method. Magnetic characterization using vibrating sample magnetometer (VSM) has revealed an enhancement in the saturation magnetization with Dy3+ doping. The occupancy of the dopant ions in magnetite lattice has been probed using Fourier transform infrared spectroscopy (FTIR). The shifting of ν2 (Fe–O) band at 452 cm− 1 for undoped samples to 443 cm− 1 for dysprosium-doped samples is indicative of occupancy of dysprosium at the octahedral site. X-ray diffraction (XRD) patterns have been used to calculate the strain and lattice constant. The strain is found to increase with doping level and attained a maximum value for the x = 0.03. This increase in the strain can be attributed to occupancy of large diameter Dy3+ ions at the octahedral site of spinel structure of the magnetite lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bird, S.M., Galloway, J.M., Rawlings, A.E., Bramblea, J.P., Staniland, S.S.: Taking a hard line with biotemplating: cobalt doped magnetite magnetic nanoparticle arrays. Nanoscale 7, 7340–7351 (2015)

    Article  ADS  Google Scholar 

  2. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, Y.: One-dimensional nanostructure: synthesis, characterization and application. Adv. Mater. 15, 353–389 (2003)

    Article  Google Scholar 

  3. Alcantara, D., Lopez, S., García-Martin, M.L., Pozo, D.: Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: current applications in nanomedicine. Nanomed.: Nanotechnol. Biol. Med. 12, 1253–1262 (2016)

    Article  Google Scholar 

  4. Jamshaid, T., Taveira Tenório Neto, E., Eissa, M.M., Zine, N., Hiroiuqui Kunita, M., El-Salhi, A.E., Elaissari, A.: Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Trends Anal. Chem. 79, 344–362 (2016)

    Article  Google Scholar 

  5. Zhao, Z., Chi, X., Yang, L., Yang, R., Ren, B.W., Zhu, X., Zhang, P., Gao, J.: Cation exchange of anisotropic-shaped magnetite nanoparticles generates highrelaxivity contrast agents for liver tumor imaging. Chem. Mater. 28, 3497–3506 (2016)

    Article  Google Scholar 

  6. Chowdhuri, A.R., Bhattacharya, D., Sahu, S.K.: Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and MRI contrast agent. Dalton Trans. 45, 2963–2973 (2016)

    Article  Google Scholar 

  7. Zhang, H., Malik, V., Mallapragada, S., Akinc, M.: Synthesis and characterization of Gd-doped magnetite nanoparticles. J. Magn. Magn. Mater. 423, 386–394 (2017)

    Article  ADS  Google Scholar 

  8. Rice, K.P., Russek, S.E., Geiss, R.H., Shaw, J.M., Usselman, R.J., Evarts, E.R., Silva, T.J., Nembach, H.T., Arenholz, E., Idzerda, Y.U.: Temperature dependent structure of Tb-doped magnetite nanoparticles. Appl. Phys. Lett. 106, 0624091-4 (2015)

    Article  Google Scholar 

  9. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New Delhi (1995)

    Google Scholar 

  10. Kulkarni, S.K.: Nanotechnology: Principles and Practices, 2nd edn. Capital Publishing Company, New Delhi (2011)

    Google Scholar 

  11. Aghazadeh, M., Ganjali, M.R.: Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: development of a novel iron-based electrode. Ceram. Int. 44, 520–529 (2018)

    Article  Google Scholar 

  12. Shi, J., Tong, L., Ren, X., Li, Q., Yang, H.: Multifuctional Fe3O4@C/YVO4:Dy3+ nanopowers: preparation, luminescence and magnetic properties. Ceram. Int. 39, 6391–6397 (2013)

    Article  Google Scholar 

  13. Huan, W., Ji, G., Cheng, C., An, J., Yang, Y., Liu, X.: Preparation, characterization of high-luminescent and magnetic Eu3+, Dy3+ doped superparamagnetic nano-Fe3O4. J. Nanosci. Nanotechnol. 14, 1–9 (2014)

    Article  Google Scholar 

  14. Jain, R., Luthra, V., Gokhale, S.: Dysprosium doping induced shape and magnetic anisotropy of Fe3−xDyxO4 (x = 0.01–0.1) nanoparticles. J. Magn. Magn. Mater. 414, 111–115 (2016)

    Article  ADS  Google Scholar 

  15. Chandra, S., Das, R., Kalappattil, V., Eggers, T., Harnagea, C., Nechache, R., Phan, M.-H., Rosei, F., Srikanth, H.: Epitaxial magnetite nanorods with enhanced room temperature magnetic anisotropy. Nanoscale 9, 7858–7867 (2017)

    Article  Google Scholar 

  16. Sharma, R., Singhal, S.: Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Physica B 414, 83–90 (2013)

    Article  ADS  Google Scholar 

  17. Caruntu, D., Caruntu, G., O’Connor, C.J.: Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyol. J. Phys. D: Appl. Phys. 40, 5801–5809 (2007)

    Article  ADS  Google Scholar 

  18. Gadkari, A., Shinde, T., Vasambekar, P.: Influence of rare-earth ions on structural and magnetic properties of CdFe2O4. Rare Met. 29, 168–173 (2010)

    Article  Google Scholar 

  19. Rana, S., Philip, J., Raj, B.: Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater. Chem. Phys. 124, 264–269 (2010)

    Article  Google Scholar 

  20. Karamipour, S., Sadjadi, M.S., Farhadyar, N.: Fabrication and spectroscopic studies of folic acid conjugated Fe3O4@Au core–shell for targeted drug delivery application. Spectrochim. Acta Mol. Biomol. Spectrosc. 148, 146–155 (2015)

    Article  ADS  Google Scholar 

  21. Gasparov, L.V., Tanner, D.B., Romero, D.B., Margaritondo, H. Berger G., Forro, L.: Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B 62, 7939–7944 (2000)

    Article  ADS  Google Scholar 

  22. Wolska, E., Piszora, P., Nowicki, W., Darul, J.: Vibrational spectra of lithium ferrites: infrared spectroscopic studies of Mn-substituted LiFe5O8. Int. J. Inorg. Mater. 3, 503–507 (2001)

    Article  Google Scholar 

  23. Giri, J., Bahadur, T., Sriharsha, D.: Optimization of parameters for the synthesis of nano-sized Co1−xZnxFe2O4, (0 ≤ x ≤ 0.8) by microwave refluxing. Mater. Chem. 14, 875–880 (2004)

    Article  Google Scholar 

  24. Tan, X., Fang, M., Chen, C., Yu, S., Wang, X.: Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon 46, 1741–1750 (2008)

    Article  Google Scholar 

  25. Zhao, F., Zhang, B., Feng, L.: Preparation and magnetic properties of magnetite nanoparticles. Mater. Lett. 68, 112–114 (2012)

    Article  Google Scholar 

  26. Sudakar, C., Subbanna, G.N., Narayanan Kutty, T.R.: Synthesis of acicular hydrogoethite (α-FeOOH⋅ x H2O; 0.1 < x < 0.22) particles using morphology controlling cationic additives and magnetic properties of maghemite derived from hydrogoethite. J. Mater. Chem. 12, 107–116 (2002)

    Article  Google Scholar 

  27. Pawar, R.A., Patange, S.M., Tamboli, Q.Y., Ramanathan, V., Shirsath, S.E.: Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co-Zn ferrites synthesized by sol-gel method. Ceram. Int. 42, 16096–16102 (2016)

    Article  Google Scholar 

  28. Shirsath, S.E., Mane, M.L., Yasukawa, Y., Liu, X., Morisako, A.: Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+-Mn2+-Fe3+-O2− ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16, 2347–2357 (2014)

    Article  Google Scholar 

  29. Amiri, S., Shokrollahi, H.: Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, Gd) nanoparticles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  ADS  Google Scholar 

  30. Ma, M., Zhang, Y., Yu, W., Shen, H.-Y., Zhang, H.-Q., Gu, N.: Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf. A Physicochem. Eng. Asp. 212, 219–226 (2003)

    Article  Google Scholar 

  31. Iyengar, S.J., Joy, M., Ghosh, C.K., Dey, S., Kotnala, R.K., Ghosh, S.: Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core–shell nanostructures fabricated through an aqueous route. RSC Adv. 4, 64919–64929 (2014)

    Article  Google Scholar 

  32. Kambale, R.C., Song, K.M., Koo, Y.S., Hur, N.: Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 0539101-7 (2011)

    Article  Google Scholar 

  33. Padalia, D., Johri, U.C., Zaidi, M.G.H.: Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles. Mater. Chem. Phys. 169, 89–95 (2016)

    Article  Google Scholar 

  34. Ibrahim Dar, M., Shivashankar, S.A.: Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv. 4, 4105–4113 (2014)

    Article  Google Scholar 

  35. Prathapani, S., Vinitha, M., Jayaraman, T.V., Das, D.: Effect of Er doping on the structural and magnetic properties of cobalt-ferrite. J. Appl. Phys. 115, 17A502 (2014)

    Article  Google Scholar 

  36. Zhao, X., Wang, W., Zhang, Y., Wu, S., Li, F., Liu, J.P.: Synthesis and characterization of gadolinium doped Cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chem. Eng. J. 250, 164–174 (2014)

    Article  Google Scholar 

  37. Anita, Luthra, V.: Tweaking electrical and magnetic properties of Al–Ni co-doped ZnO Nanopowders. Ceram. Int. 40, 14927–14932 (2014)

    Article  Google Scholar 

  38. Anjum, S., Tufail, R., Saleem, H., Zia, R., Riaz, S.: Investigation of stability and magnetic properties of Ni- and Co-doped iron oxide nano-particles. J. Supercond. Nov. Magn. 30, 2291–2301 (2017)

    Article  Google Scholar 

  39. Anjum, S., Saleem, H., Rasheed, K., Zia, R., Riaz, S., Usman, A.: Role of Ni2+ ions in magnetite nano-particles synthesized by co-precipitation method. J. Supercond. Nov. Magn. 30, 1177–1186 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank USIC, Delhi University for facilitating the FTIR measurements. The authors acknowledge the Indian Institute of Technology, New Delhi for XRD characterization. The authors thank Prof. Annapoorni, Delhi University, Delhi for facilitating the VSM measurements. The TEM characterization was carried out at the Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi. Authors are thankful to Dr. Gajender Saini for the help rendered in SAED analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubha Gokhale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Luthra, V., Arora, M. et al. Infrared Spectroscopic Study of Magnetic Behavior of Dysprosium Doped Magnetite Nanoparticles. J Supercond Nov Magn 32, 325–333 (2019). https://doi.org/10.1007/s10948-018-4717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4717-5

Keywords

Navigation