Skip to main content
Log in

Calculations of the Structural, Elastic, Magnetic, and Electronic Properties of the New Compound BaZr0.5Mn0.5O3 with Tetragonal Structure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Based on the density functional theory, we have calculated the structural properties of the BaZrO3 (BZO) cubic structure with PBE-GGA, PBEsol-GGA, and LDA approximations. The equilibrium lattice constant within GGA-PBEsol (a = 4.1847 Å) is in very good agreement with the experimental data (Holland and Redfern, Miner. Mag. 61: 65, 1997). The calculations of elastic properties of pure and doped BaZrO3 are calculated with PBEsol-GGA; both BZO and BZM are compressible and show a brittle nature. According to calculated electronic and magnetic properties, it is found that Mn-doped BaZrO3 system is a half metallic and exhibits a ferromagnetic character. The total magnetic moment of the cell is equal to3.57 µB; this value comes from manganese atom (Mn) with a value of 3.176 µB. The magnetic moments of barium, oxygen, and zirconium atoms are approximately equal to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walsch, A., Sokol, A., Catlow, R.: Energy Storage: Rechargeable Lithium Batteries. In: Computational Approaches to Energy Materials. Wiley, New York (2013)

  2. Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Y.A., Maier, J.: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443–5471 (2013)

    Article  Google Scholar 

  3. Donnerberg, H.J.: Atomic Simulations of Electrooptical and Magnetooptical Materials. Springer Tracts in Modern Physics. Springer, Berlin (1999)

    Google Scholar 

  4. Sundell, P.G., Bjorketun, M.E., Wahnstrom, G.: Phys. Rev. B 73, 104112 (2006)

    Article  ADS  Google Scholar 

  5. Haile, M., Staneff, G., Ryu, K.H.: Mater. Sci. 36, 1149 (2001)

    Article  ADS  Google Scholar 

  6. Heifets, E., Ho, J., Merinov, B.: Phys. Rev. B 75, 155431 (2007)

    Article  ADS  Google Scholar 

  7. Tao, S., Irvine, J.T.S.: J. Solid State Chem. 180, 3493 (2007)

    Article  ADS  Google Scholar 

  8. Ahmed, I., Eriksson, S.-G., Ahlberg, E., Knee, C.S., Götlind, H., Johansson, L.-G., Karlsson, M., Matic, A., Börjesson, L.: Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ion. 178, 515 (2007)

    Article  Google Scholar 

  9. Bohn, H.G., Schober, T.: J. Am. Ceram. Soc. 83, 768 (2000)

    Article  Google Scholar 

  10. Schneller, T., Schober, T.: Solid State Ion. 164, 131 (2003)

    Article  Google Scholar 

  11. Babilo, P., Uda, T., Haile, S.M.: J. Mater. Res. 22, 1322 (2007)

    Article  ADS  Google Scholar 

  12. Kreuer, K.D.: Solid State Ion. 125(1–4), 285 (1999)

    Article  Google Scholar 

  13. Ahmad, T., Ubaidullah, M., Shahazad, M., Kumar, D., Al-Hartomy, O.A.: Materials Chemistry and Physics 1–8 (2016)

  14. Ahmed, I., Eriksson, S.G., Ahlberg, E., Knee, C.S., Karlsson, M., Matic, A., Engberg, D., Börjesson, L.: Solid State Ion. 177, 2357–2362 (2006)

    Article  Google Scholar 

  15. Iwahara, H., Yajima, T., Hibino, T., Ozaki, K., Suzuki, H.: Solid State Ion 61, 65–9 (1993)

    Article  Google Scholar 

  16. Nowick, A.S., Du, Y., Liang, K.C.: Solid State Ion 125, 303–11 (1999)

    Article  Google Scholar 

  17. Goldschmidt, W.: Geochemiste Verteilungegesetze der Element VII VIII, 1927 (1928)

    Google Scholar 

  18. Majid, A., Khan, A., Javed, G., Mirza, A.M.: Comput. Mater. Sci. 50, 363–372 (2010)

    Article  Google Scholar 

  19. Blaha, P., Schwarz, K., Madsen, G.K.H., Hvasnicka, D., Luitz, J.: Vienna university of technology austria (2001)

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. Perdew, J.P., Wang, Y.: Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  22. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  23. Birch, F.: Phys. Rev. 71, 809–824 (1947)

    Article  ADS  Google Scholar 

  24. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. Jamal, M., Reshak, A.H.: Tetra-elastic. Available from: http://www.wien2k.at/reguser/unsupported/

  26. Voigt, W.: Over the relationship between the two elasticity constants of isotropicbodies. Ann. Phys. 38, 573–587 (1889)

    Article  Google Scholar 

  27. Reuss, A., Angew, Z.: Math. Phys. 9, 49–58 (1929)

    Google Scholar 

  28. Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  29. Simmons, G., Wang, H.: MIT Press, Cambridge (1971)

  30. Hector, L.G. Jr., Herbst, J.F., Capehart, T.W.: J Alloys Compd. 353, 74 (2003)

    Article  Google Scholar 

  31. Ganeshan, S., Shang, S.L., Wang, Y., Liu, Z.K.: Acta Mater. 57, 3876 (2009)

    Article  Google Scholar 

  32. Christman, J.R.: Fundamentals of Solid State Physics. Wiley Press, New York (1988)

    Google Scholar 

  33. Sun, Z., Li, S., Ahuja, R., Schneide, J.M.: Solid State Commun. 129, 589–592 (2004)

    Article  ADS  Google Scholar 

  34. Hao, A., Yang, X., Wang, X., Yu, R., Liu, X., Xin, W., Liu, R.: Comput. Mater. Sci. 48, 59–64 (2010)

    Article  Google Scholar 

  35. Jansiukiewicz, C., Karpus, V.: Solid State Commun. 128, 167–169 (2003)

    Article  ADS  Google Scholar 

  36. Verma, A.S., Jindal, V.L.: J. Alloys compd 485–514 (2009)

  37. Holland, T.J.B., Redfern, S.A.T.: Miner. Mag. 61, 65 (1997)

    Article  Google Scholar 

  38. Yamanaka, S., Fujikane, M., Hamaguchi, T., Muta, H.: J. Alloys Compd. 359, 109–113 (2003)

    Article  Google Scholar 

  39. Youn, S.J., Min, B.I.: Phys. Rev. B 56, 19 (1997)

    Article  Google Scholar 

  40. Jonker, G.H., Van Santen, J.H.: Phys. (Amsterdam) 16, 337 (1950)

    Article  ADS  Google Scholar 

  41. Grimvall, G.: Thermophysical Properties of Materials. North Holland: Elsevier

  42. Wang, J., Yip, S., Phillpot, S.R., Wolf, D.: Phys. Rev. Lett. 71, 4182–4185 (1993)

    Article  ADS  Google Scholar 

  43. Born, M., Hung, K.: Dynamical Theory of Crystal Lattice. Clarendon, Oxford (1954)

    Google Scholar 

  44. Pugh, S.F.: Philos. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  45. Haines, J., Leger, J.M., Bocquillon, G.: Annu. Rev. Mater. Res. 3, 1–23 (2001)

    Article  ADS  Google Scholar 

  46. Christen, H.M., Specht, E.D., Silliman, S.S., Harshavardhan, K.S.: Phys. Rev. B rapid communication (2003)

  47. Robertson, J.: J Vacuum Sci. Technol. B 18.3, 1785–1791 (2000)

    Article  ADS  Google Scholar 

  48. Hamada, N., Sawada, H., Terakura, K.: J. Phys. Chem. Solids 56, 1719 (1995)

    Article  ADS  Google Scholar 

  49. Iles, N., Kellou, A., Driss Khodja, K., Amrani, B., Lemoigno, F., Bourbie, D., Aourag, H.: Comput. Mater. Sci. 39, 896–902 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Boudali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temmar, F., Boudali, A., Driss Khodja, F. et al. Calculations of the Structural, Elastic, Magnetic, and Electronic Properties of the New Compound BaZr0.5Mn0.5O3 with Tetragonal Structure. J Supercond Nov Magn 31, 3339–3346 (2018). https://doi.org/10.1007/s10948-018-4594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4594-y

Keywords

Navigation