Skip to main content

Advertisement

Log in

Preparation and Property Research of Perfluoropolyether Oil-Based Ferrofluid

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, perfluoropolyether oil-based ferrofluid was prepared to satisfy special demands in applications which are too harsh to conventional ferrofluids. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation and modified by perfluoropolyether carboxylic acid surfactant in the atmosphere without protective gas. Perfluoropolyether oil-based ferrofluid was prepared with modified nanoparticles and perfluoropolyether by high-energy ball milling. Properties of ferrofluid fabricated were verified through a series of experiments. Ferrofluid stability was tested by interval point-density method; the average density change is merely 0.0077 g/ml, and change rate is 0.37% after 500 days. Saturation magnetization is 582.46 Gs, much larger than the other four ferrofluids. The average volatility rate is 7.4985*10− 5 g/h/cm2 at 80 °C after 260 h. Viscosity increases to 1825.7 mPa⋅ s under − 20 °C and still have mobility at − 40 °C. The ferrofluid can resist air blast for 8 h under 200 °C without oxidation or decomposition. Perfluoropolyether oil-based ferrofluid cannot be damaged by water or organic solvents. In addition, the ferrofluid can survive in pH = 1 acid or pH = 14 alkali at least 279 days without corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Guo, T., Bian, X., Yang, C.: A new method to prepare water based Fe3O4 ferrofluid with high stabilization. Physica A. 438, 560–567 (2015)

    Article  ADS  Google Scholar 

  2. Berger, P., Adelman, N.B., Beckman, K.J., Campbell, D.J., Ellis, A.B., Lisensky, G.C.: Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 76, 943 (1999)

    Article  Google Scholar 

  3. Li, J., Liu, X., Lin, Y., Bai, L., Li, Q., Chen, X., Wang, A.: Field modulation of light transmission through ferrofluid film. Appl. Phys. Lett. 253108, 91 (2007)

    Google Scholar 

  4. Răcuciu, M., Creangă, D., Călugăru, G.: Synthesis and rheological properties of an aqueous ferrofluid. J. Optoelectron. Adv. M. 7, 2859–2864 (2005)

    Google Scholar 

  5. Arantes, F.R., Odenbach, S.: The magnetoviscous effect of micellar solutions doped with water based ferrofluids. J. Magn. Magn. Mater. 390, 91–95 (2015)

    Article  ADS  Google Scholar 

  6. Fosa, G., Bădescu, R., Călugăru, G., Bădescu, V.: Measuring the transmittivity of light: a tool for testing the quality of magnetic liquids. Opt. Mater. 28, 461–465 (2006)

    Article  ADS  Google Scholar 

  7. Lin, J.F., Wang, C.H., Lee, M.Z.: Linear birefringence and dichroism measurement in oil-based Fe3O4 magnetic nanoparticles. J. Magn. Magn. Mater. 332, 192–198 (2013)

    Article  ADS  Google Scholar 

  8. Arora, M., Singh, R., Panda, M.: Effects of magnetic-field-dependent viscosity at onset of convection in magnetic nanofluids. J. Eng. Math. 101, 201–217 (2016)

    Article  MathSciNet  Google Scholar 

  9. Singh, J., Bajaj, R.: Dean instability in ferrofluids. Meccanica 51, 835–847 (2016)

    Article  MathSciNet  Google Scholar 

  10. Luo, J., Zhang, G., Xie, N., Wang, T., Gu, Y., Gong, S., Wang, C.: A magnetic sensor based on a hybrid long-period fiber grating and ester-based Fe3O4 magnetic fluid. IEEE Photonics Technol. Lett. (2015)

  11. Desai, R., Upadhyay, R., Mehta, R.: Augmentation of chain formation in a magnetic fluid by the addition of halloysite nanotubes. J. Phys. D: Appl. Phys. 47, 165501 (2014)

    Article  ADS  Google Scholar 

  12. Parekh, K., Upadhyay, R., Mehta, R.: Magnetocaloric effect in temperature-sensitive magnetic fluids. Bull. Mater. Sci. 23, 91–95 (2000)

    Article  Google Scholar 

  13. Zhang, L., Huang, Z., Shao, H., Li, Y., Zheng, H.: Effects of γ-Fe2O3 on γ-Fe2O3/Fe3O4 composite magnetic fluid by low-temperature low-vacuum oxidation method. Mater. Des. 105, 234–239 (2016)

    Article  ADS  Google Scholar 

  14. Ohara, T.: Bearing with magnetic fluid seal US9611893 (2017)

  15. Szczech, M., Horak, W.: Numerical simulation and experimental validation of the critical pressure value in ferromagnetic fluid seals. IEEE Trans. Magn. 53, 4600605 (2017)

    Article  Google Scholar 

  16. Marinică, O., Susan-Resiga, D., Bălănean, F., Vizman, D., Socoliuc, V., Vékás, L.: Nano-micro composite magnetic fluids: Magnetic and magnetorheological evaluation for rotating seal and vibration damper applications. J. Magn. Magn. Mater. 406, 134–143 (2016)

    Article  ADS  Google Scholar 

  17. Hajalilou, A., Mazlan, S.A., Lavvafi, H., Shameli, K.: Field Responsive Fluids as Smart Materials. Springer, Singapore (2016)

    Book  Google Scholar 

  18. Varshney, S., Ohlan, A., Jain, V., Dutta, V., Dhawan, S.: Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding. Mater. Chem. Phys. 143, 806–813 (2014)

    Article  Google Scholar 

  19. Mishra, M., Singh, A.P., Singh, B.P., Singh, V.N., Dhawan, S.K.: Conducting ferrofluid: a high-performance microwave shielding material. J. Mater. Chem. A. 2, 13159–13168 (2014)

    Article  Google Scholar 

  20. Hee Kim, E., Sook Lee, H., Kook Kwak, B., Kim, B.-K.: Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)

    Article  ADS  Google Scholar 

  21. Kim, E.H., Lee, H.S., Kwak, B.K., Kim, B.-K.: Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)

    Article  ADS  Google Scholar 

  22. Zhang, L.Y., Gu, H.C., Wang, X.M.: Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J. Magn. Magn. Mater. 311, 228–233 (2007)

    Article  ADS  Google Scholar 

  23. Ganguly, R., Gaind, A.P., Sen, S., Puri, I.K.: Analyzing ferrofluid transport for magnetic drug targeting. J. Magn. Magn. Mater. 289, 331–334 (2005)

    Article  ADS  Google Scholar 

  24. Metelkina, O.N., Lodge, R.W., Rudakovskaya, P.G., Gerasimov, V.M., Lucas, C.H., Grebennikov, I.S., Shchetinin, I.V., Savchenko, A.G., Pavlovskaya, G.E., Rance, G.A.: Nanoscale engineering of hybrid magnetite–carbon nanofibre materials for magnetic resonance imaging contrast agents. J. Mater. Chem. C. 5, 2167–2174 (2017)

    Article  Google Scholar 

  25. Odenbach, S.: Fluid mechanics aspects of magnetic drug targeting. Biomedical Engineering/Biomedizinische Technik 60, 477–483 (2015)

    Google Scholar 

  26. Hensley, D., Tay, Z.W., Dhavalikar, R., Zheng, B., Goodwill, P., Rinaldi, C., Conolly, S.: Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys. Med. Biol. 62, 3483 (2017)

    Article  Google Scholar 

  27. Hedayatnasab, Z., Abnisa, F., Daud, W.M.A.W.: Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 123, 174–196 (2017)

    Article  Google Scholar 

  28. Martinez, L., Cecelja, F., Rakowski, R.: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators, A. 123, 438–443 (2005)

    Article  Google Scholar 

  29. Miao, Y., Zhang, K., Liu, B., Lin, W., Zhang, H., Lu, Y., Yao, J.: Ferrofluid-infiltrated microstructured optical fiber long-period grating. IEEE Photonics Technol. Lett. 25, 306–309 (2013)

    Article  ADS  Google Scholar 

  30. Zhao, Y., Wu, D., Lv, R.Q.: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 27, 26–29 (2015)

    Article  ADS  Google Scholar 

  31. Zarandi, A.A., Alvani, A.A.S., Salimi, R., Sameie, H., Moosakhani, S., Poelman, D., Rosei, F.: Self-organization of an optomagnetic CoFe2O4–ZnS nanocomposite: preparation and characterization. J. Mater. Chem. C. 3, 3935–3945 (2015)

    Article  Google Scholar 

  32. Kopyl, S., Bystrov, V., Bdikin, I., Maiorov, M., Sousa, A.C.: Filling carbon nanotubes with magnetic particles. J. Mater. Chem. C. 1, 2860–2866 (2013)

    Article  Google Scholar 

  33. Sheikholeslami, M., Ganji, D.D.: Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75, 400–410 (2014)

    Article  Google Scholar 

  34. Sheikholeslami, K.M.: Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur. Phys. J. Plus. 129, 248 (2014)

    Article  Google Scholar 

  35. Lajvardi, M., Moghimi-Rad, J., Hadi, I., Gavili, A., Isfahani, T.D., Zabihi, F., Sabbaghzadeh, J.: Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J. Magn. Magn. Mater. 322, 3508–3513 (2010)

    Article  ADS  Google Scholar 

  36. Pastoriza-Gallego, M.J., Lugo, L., Legido, J.L., Piñeiro, M.M.: Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids. Nanoscale Res. Lett. 6, 560 (2011)

    Article  ADS  Google Scholar 

  37. Torres, D.I., Rinaldi, C.: Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10, 8584–8602 (2014)

    Article  ADS  Google Scholar 

  38. Raj, K., Moskowitz, B., Casciari, R.: Advances in ferrofluid technology. J. Magn. Magn. Mater. 149, 174–180 (1995)

    Article  ADS  Google Scholar 

  39. Cui, H.C., Li, D.C., Zhang, Z.L.: Preparation and characterization of Fe3O4 magnetic nanoparticles modified by perfluoropolyether carboxylic acid surfactant. Mater. Lett. 143, 38–40 (2015)

    Article  Google Scholar 

  40. Bamgbade, B.A., Wu, Y., Burgess, W.A., McHugh, M.A.: Experimental density and PC-SAFT modeling of Krytox® (perfluoropolyether) at pressures to 275 MPa and temperatures to 533 K. Fluid Phase Equilib. 332, 159–164 (2012)

    Article  Google Scholar 

  41. Ataei, S., Yahya, R., Gan, S.N., Hassan, A.: Study of thermal decomposition kinetics of palm oleic acid-based alkyds and effect of oil length on thermal stability. J. Polym. Environ. 20, 507–513 (2012)

    Article  Google Scholar 

Download references

Funding

This study has been supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT No. IRT13046), Key Program of National Natural Science Foundation of China (No. 51735006), National Natural Science Foundation of China (No. 51375039), Joint Fund Project of Education Ministry (No. 6141A02022216), and Beijing Training Project for the Leading Talents (No. Z161100004916008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Li, D. Preparation and Property Research of Perfluoropolyether Oil-Based Ferrofluid. J Supercond Nov Magn 31, 3607–3624 (2018). https://doi.org/10.1007/s10948-017-4557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4557-8

Keywords

Navigation