Skip to main content
Log in

Rich Soliton Structures for the Kraenkel-Manna-Merle (KMM) System in Ferromagnetic Materials

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A particular attention is paid to investigate the Kraenkel-Manna-Merle (KMM) system, which can describe the nonlinear short-wave propagation in saturated ferromagnetic materials with zero-conductivity in an external field. A class of exact soliton solutions is constructed via the generalized G /G-expansion method. Some novel soliton structures are excited by choosing the arbitrary functions in the solution as certain specific functions. Hump-soliton, cusp-soliton, loop-soliton, and kink-soliton are observed graphically. The results reveal the system theoretically possesses extremely rich soliton structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morrison, A.J., Parkes, E.J., Vakhnenko, V.O.: The N-loop soliton solution of the Vakhnenko equation. Nonlinearity 12, 1427 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Li, J.B.: Dynamical understanding of loop soliton solution for several nonlinear wave equations. Sci. China Series A Math. 50, 773 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Victor, K.K., Thomas, B.B., Kofane, T.C.: On high-frequency soliton solutions to a (2+1)-dimensional nonlinear partial differential evolution equation. Chin. Phys. Lett. 25, 425 (2008)

    Article  Google Scholar 

  4. Parkes, E.J.: Some periodic and solitary travelling-wave solutions of the short-pulse equation. Chaos Solitons Fractals 38, 154 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Kuetche, V.K., Bouetou, T.B., Kofane, T.C.: On two-loop soliton solution of the Schäfer-Wayne short-pulse equation using Hirota’s method and Hodnett-Moloney approach. J. Phys. Soc. Jpn. 76, 024004 (2007)

    Article  ADS  Google Scholar 

  6. Matsuno, Y.: Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76, 084003 (2007)

    Article  ADS  Google Scholar 

  7. Ma, Y.L., Li, B.Q., Wang, C.: A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method. Appl. Math. Comput. 211, 102 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Li, B.Q., Ma, Y.L., Sun, J.Z.: The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation. Appl. Math. Comput. 216, 3522 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, M., Ma, Y.L., Li, B.Q.: Novel loop-like solitons for the generalized Vakhnenko equation. Chin. Phys. B 22, 030511 (2013)

    Article  ADS  Google Scholar 

  10. Li, B.Q., Ma, Y.L., Wang, C., Xu, M.P., Li, Y.: Folded soliton with periodic vibration for a nonlinear coupled Schrödinger system. Acta Phys. Sin. 60, 060203 (2011)

    Google Scholar 

  11. Li, B.Q., Ma, Y.L., Mo, L.P., Fu, Y.Y.: The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation. Comput. Math. Appl. 74, 504 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ling, L.M., Feng, B.F., Zhu, Z.N.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Physica D 327, 13 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Zhaqilao: The interaction solitons for the complex short pulse equation. Commun. Nonlinear Sci. Numer. Simulat. 47, 379 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dennis, M.R., King, R.P., Jack, B., O’Holleran, K., Padgett, M.J.: Isolated optical vortex knots. Nat. Phys. 6, 118 (2010)

    Article  Google Scholar 

  15. Rañada, A.F.: Knotted solutions of the Maxwell equations in vacuum. J. Phys. A 23, L815 (1999)

    Article  MathSciNet  Google Scholar 

  16. Rañada, A. F., Trueba, J.L.: Two properties of electromagnetic knots. Phys. Lett. A 232, 25 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Arrayás, M., Bouwmeester, D., Trueba, J.L.: Knots in electromagnetism. Phys. Rep. 667, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Irvine, W.T.M., Bouwmeester, D.: Linked and knotted beams of light. Nat. Phys. 4, 716 (2008)

    Article  Google Scholar 

  19. Irvine, W.T.M.: Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields. J. Phys. A 43, 474 (2001)

    MathSciNet  Google Scholar 

  20. Ackerman, P.J., Smalyukh, I.I.: Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys. Rev. X 7, 011006 (2017)

    Google Scholar 

  21. Kedia, H., Bialynicki-Birula, I., Peralta-Salas, D., Irvine, W.T.M.: Tying knots in light fields. Phys. Rev. Lett. 111, 150404 (2013)

    Article  ADS  Google Scholar 

  22. Hoyos, C., Sircar, N., Sonnenschein, J.: New knotted solutions of Maxwell’s equations. J. Phys. A 48, 055204 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lau, H.W., Davidsen, J.: Linked and knotted chimera filaments in oscillatory systems. Phys. Rev. E 94, 010204 (2016)

    Article  ADS  Google Scholar 

  24. di Leoni, P.C., Mininni, P.D., Brachet, M.E.: Helicity, topology, and Kelvin waves in reconnecting quantum knots. Phys. Rev. A 94, 043605 (2016)

    Article  ADS  Google Scholar 

  25. de Klerk, A.J.J.M., van der Veen, R.I., Dalhuisen, J.W., Bouwmeester, D.: Knotted optical vortices in exact solutions to Maxwell’s equations. Phys. Rev. A 95, 053820 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ishizaka, S., Nakamura, K.: Propagation of solitons of the magnetization in magnetic nanoparticle arrays. J. Mag. Mag. Mat. 210, 15 (2000)

    Article  ADS  Google Scholar 

  27. Ciornei, M.C., Rubi, J.M., Wegrowe, J.E.: Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys. Rev. B 83, 020410 (2011)

    Article  ADS  Google Scholar 

  28. Fähnle, M., Steiauf, D., Illg, C.: Generalized Gilbert equation including inertial damping: derivation from an extended breathing Fermi surface model. Phys. Rev. B 84, 172403 (2011)

    Article  ADS  Google Scholar 

  29. Dvornik, M., Vansteenkiste, A., Waeyenberge, B.V.: Micromagnetic modeling of anisotropic damping in magnetic nanoelements. Phys. Rev. B 88, 1336 (2013)

    Article  Google Scholar 

  30. David, C., Arumugam, B., Rajamani, A.: Modeling the elementary excitations in an alternating cubic ferrimagnetic multilayer. J. Supercond. Nov. Magn. 27, 215 (2014)

    Article  Google Scholar 

  31. Natarajan, K., Arumugam, B., Rajamani, A.: Solitons in dual-barrier magnetic tunnel junction. J. Supercond. Nov. Magn. 29, 1885 (2016)

    Article  Google Scholar 

  32. Sadeghi, N., Ketabi, S.A., Shahtahmassebi, N., Abolhassani, M.R.: Influence of soliton spin density on the spin filtering properties of magnetic poly-bipo molecule. J. Supercond. Nov. Magn. 28, 2203 (2015)

    Article  Google Scholar 

  33. Kraenkel, R.A., Manna, M.A., Merle, V.: Nonlinear short-wave propagation in ferrites. Phys. Rev. E 61, 976 (2000)

    Article  ADS  Google Scholar 

  34. Nguepjouo, F.T., Victor, K.K., Kofane, T.C.: Soliton interactions between multivalued localized waveguide channels within ferrites. Phys. Rev. E 89, 063201 (2014)

    Article  ADS  Google Scholar 

  35. Tchokouansi, H.T., Kuetche, V.K., Kofane, T.C.: On the propagation of solitons in ferrites: the inverse scattering approach. Chaos Solitons Fract. 86, 64 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Inan, I.E., Ugurlu, Y., Inc, M.: New Applications of the (G /G, 1/G)-expansion method. Acta Phys. Pol. 128, 245 (2015)

    Article  Google Scholar 

  37. Inc, M., Kilic, B., Ugurlu, Y.: Soliton solutions for bogoyavlensky-konoplechenko and jaulent-miodek equations via extended (G /G)-expansion method. Rom. J. Phys. 60, 1395 (2015)

    Google Scholar 

  38. Ma, Y.L., Li, B.Q.: A method for constructing nontraveling wave solutions for (1+1)-dimensional evolution equations. J. Math. Phys. 51, 063512 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Li, B.Q., Ma, Y.L.: The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 144 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Qing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BQ., Ma, YL. Rich Soliton Structures for the Kraenkel-Manna-Merle (KMM) System in Ferromagnetic Materials. J Supercond Nov Magn 31, 1773–1778 (2018). https://doi.org/10.1007/s10948-017-4406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4406-9

Keywords

Navigation