Skip to main content
Log in

The Influence of Dispersedly Distributed Cracks on Critical Current of the Nb3Sn Strand

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Nb3Sn strand is the presently most widely used high field superconductor. However, one important fact is that the transport properties of an Nb3Sn strand will degrade obviously when it is subjected to high mechanical loads. Based on the dispersed distribution of cracks in the bronze strand due to a high axial tensile strain, we propose an analytical strand model to describe the influence of cracks on the critical current of the Nb3Sn strand. The dependence of the critical current I c of the strand on crack density is investigated theoretically. It is shown that the calculation results by this model agree with the experimental data. The influence of filament-to-matrix resistance r c on transport degradation is also discussed since r c is a key parameter for the total voltage calculation and its realistic value is of great importance for accurate results. We also compared the influence of dispersed and collective cracks on transport properties with specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martovetsky, N., Michael, P., Minervini, J., Radovinsky, A.: ITER CS model coil and CS insert test results. IEEE Trans. Appl. Supercond. 11(1), 2030–2033 (2001)

    Article  Google Scholar 

  2. Pyon, T., Kanithi, H.: Development of Nb3Sn conductors for fusion and high energy physics. IEEE Trans. Appl. Supercond. 13(2), 3474–3477 (2003)

    Article  Google Scholar 

  3. Parrell, J.A., Field, M.B., Zhang, Y., Hong, S.: Advances in Nb3Sn strand for fusion and particle accelerator applications. IEEE Trans. Appl. Supercond. 15(2), 1200–1204 (2005)

    Article  Google Scholar 

  4. Luhman, T., Suenaga, M., Welch, D., Kaiho, K.: Degradation mechanism of Nb3Sn composite wires under tensile strain at 4.2K. IEEE Trans. Magn. 15(1), 699–702 (1978)

    Article  ADS  Google Scholar 

  5. Sheth, M.K., Lee, P.J., Mcrae, D.M., Sanabria, C.M., Starch, W.L., Walsh, R.P., Jewell, M.C., Devred, A., Larbalestier, D.C.: Study of filament cracking under uniaxial repeated loading for ITER TF strands. IEEE Trans. Appl. Supercond. 22(3), 4802504–4802504 (2012)

    Article  Google Scholar 

  6. Sheth, M.K., Lee, P., McRae, D.M., Walsh, R., Starch, W.L., Jewell, M.C., Devred, A., Larbalestier, D.C.: Procedures for evaluating filament cracking during fatigue testing of Nb3Sn strand, pp. 201–208. https://doi.org/10.1063/1.4712097 (2012)

  7. Senkowicz, B.J., Takayasu, M., Lee, P.J., Minervini, J.V., Larbalestier, D.C.: Effects of bending on cracking and critical current of Nb3Sn ITER wires. IEEE Trans. Appl. Supercond. 15(2), 3470–3473 (2005)

    Article  Google Scholar 

  8. Xue, F., Zhang, Z., Zeng, J., Gou, X.: Effect of an elliptical inclusion on critical current density of a long cylindrical high- T c superconductor. J. Supercond. Nov. Magn. 29(8), 2023–2029 (2016). https://doi.org/10.1007/s10948-016-3534-y

    Article  Google Scholar 

  9. Jewell, M.C., Lee, P.J., Larbalestier, D.C.: The influence of Nb3Sn strand geometry on filament breakage under bend strain as revealed by metallography. Supercond. Sci. Technol. 16 (9), 1005–1011(1007) (2003)

    Article  ADS  Google Scholar 

  10. Jewell, M.C.: The effect of strand architecture on the fracture propensity of Nb3Sn composite wires. University of Wisconsin, Madison (2008)

  11. Miyoshi, Y., van Lanen, E.P.A., Dhallé, M.M.J., Nijhuis, A.: Distinct voltage–current characteristics of Nb3Sn strands with dispersed and collective crack distributions. Supercond. Sci. Technol. 22(8), 085009 (2009). https://doi.org/10.1088/0953-2048/22/8/085009

    Article  ADS  Google Scholar 

  12. Fang, Y., Danyluk, S., Lanagan, M.T., Youngdahl, C.A., Xu, X., Numata, K.: Characterization of Ag/Bi2Sr2Can−1CunO2n+4 interfacial resistivity. Physica C Supercond. 252(3–4), 389–396 (1995)

    Article  ADS  Google Scholar 

  13. Holúbek, T., Dhallé, M., Kováč, P.: Current transfer in MgB2 wires with different sheath materials. Supercond. Sci. Technol. 20 (3), 123–128 (2007). https://doi.org/10.1088/0953-2048/20/3/002

    Article  ADS  Google Scholar 

  14. Berger, H.H.: Contact resistance and contact resistivity. J. Electrochem. Soc. 119(4), 507–514 (1972)

    Article  Google Scholar 

  15. Vostner, A., Salpietro, E.: Enhanced critical current densities in Nb3Sn superconductors for large magnets. Supercond. Sci. Technol. 19 (3), S90–S95 (2006). https://doi.org/10.1088/0953-2048/19/3/012

    Article  ADS  Google Scholar 

  16. Boutboul, T., Abaecherli, V., Berger, G., Hampshire, D., Parrell, J., Raine, M., Readman, P., Sailer, B., Schlenga, K., Thoener, M.: European Nb3Sn superconducting strand production and characterization for ITER TF coil conductor. IEEE Trans. Appl. Supercond. 26(4), 1–4 (2016)

    Article  Google Scholar 

  17. Ochiai, S., Okuda, H., Fujii, N.: Tape length-dependence of critical current and n-value in coated conductor with a local crack. Mater. Trans. 55(9), 1479–1487 (2014). https://doi.org/10.2320/matertrans.MAW201401

    Article  Google Scholar 

  18. Patel, S., Haugan, T., Chen, S., Wong, F., Narumi, E., Shaw, D.T.: Predictive model for critical current density of Ag-sheathed Bi2Sr2Ca1Cu2O8 composite tapes with fabrication defects. Cryogenics 34(6), 537–542 (1994)

    Article  ADS  Google Scholar 

  19. Wang, Y., Xiao, L., Lin, L., Xu, X., Lu, Y., Teng, Y.: Effects of local characteristics on the performance of full length Bi2223 multifilamentary tapes. Cryogenics 43(2), 71–77 (2003). https://doi.org/10.1016/s0011-2275(03)00005-5

    Article  ADS  Google Scholar 

  20. Fang, Y., Danyluk, S., Lanagan, M.T.: Effects of cracks on critical current density in Ag-sheathed superconductor tape. Cryogenics 36(11), 957–962 (1996)

    Article  ADS  Google Scholar 

  21. Shin, J.K., Ochiai, S., Okuda, H., Sugano, M., Oh, S.S.: Change of the VI curve and critical current with applied tensile strain due to cracking of filaments in Bi2223 composite tape. Supercond. Sci. Technol. 21(11), 115007 (2008). https://doi.org/10.1088/0953-2048/21/11/115007

    Article  ADS  Google Scholar 

  22. Fang, Y., Danyluk, S., Cha, Y.S., Lanagan, M.T.: Modeling voltage distribution and current limit in Ag/Bi2Sr2Can−1CunO2n+4. J. Appl. Phys. 79(2), 947 (1996). https://doi.org/10.1063/1.362694

    Article  ADS  Google Scholar 

  23. Taylor, D.M.J., Hampshire, D.P.: Relationship between the n-value and critical current in Nb3Sn superconducting wires exhibiting intrinsic and extrinsic behaviour. Supercond. Sci. Technol. 18(12), S297–S302 (2005). https://doi.org/10.1088/0953-2048/18/12/012

    Article  ADS  Google Scholar 

  24. Bruzzone, P., Bagnasco, M., Ciazynski, D., Corte, A.D., Zenobio, A.D., Herzog, R., Ilyin, Y., Lacroix, B., Muzzi, L., Nijhuis, A.: Test results of two ITER TF conductor short samples using high current density Nb3Sn strands. IEEE Trans. Appl. Supercond. 17(2), 1370–1373 (2007)

    Article  ADS  Google Scholar 

  25. Ishibashi, K., Wake, M., Kobayashi, M., Katase, A.: Boundary resistance in SC composite wires and cryogenic stability. Cryogenics 19(3), 161–166 (1979)

    Article  ADS  Google Scholar 

  26. Godeke, A., Dhalle, M., Morelli, A., Stobbelaar, L., van Weeren, H., van Eck, H.J.N., Abbas, W., Nijhuis, A., den Ouden, A., ten Haken, B.: A device to investigate the axial strain dependence of the critical current density in superconductors. Rev. Sci. Instrum. 75(12), 5112–5118 (2004). https://doi.org/10.1063/1.1819384

    Article  ADS  Google Scholar 

  27. Gou, X., Schwartz, J.: Fractal analysis of the role of the rough interface between Bi2Sr2CaCu2Ox filaments and the Ag matrix in the mechanical behavior of composite round wires. Supercond. Sci. Technol. 26(5), 055016 (2013). https://doi.org/10.1088/0953-2048/26/5/055016

    Article  ADS  Google Scholar 

  28. Cha, Y.S., Lanagan, M.T., Gray, K.E., Jankus, V.Z., Fang, Y.: Analysis and interpretation of critical current experiments for bismuth-based high-temperature superconductors made by powder-in-tube processing. Appl. Supercond. 2(1), 47–59 (1994)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Funds of the National Science Foundation of China (No. 11372096, 11402073, and 11672100), the Fundamental Research Funds for the Central Universities (No. 2017B13114), and the Program for Research Fund for the Doctoral Program of Higher Education of China. The authors gratefully acknowledge these financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fan Gou.

Additional information

Yu Liu and Feng Xue are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xue, F. & Gou, XF. The Influence of Dispersedly Distributed Cracks on Critical Current of the Nb3Sn Strand. J Supercond Nov Magn 31, 1323–1328 (2018). https://doi.org/10.1007/s10948-017-4362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4362-4

Keywords

Navigation