Skip to main content
Log in

Gd3Fe4Si Alloy for Magnetic Refrigeration Application in a Wide Temperature Range

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Gd3Fe4Si alloy prepared by the arc melting method crystallizes in Mn5Si3-type hexagonal Gd5Si3, LaNi2-type cubic GdFe2, and hexagonal Gd phases. Magnetization and heat capacity measurements performed on the Gd3Fe4Si alloy reveal the occurrence of four second-order magnetic transitions having ordering temperatures at T 1 = 57 K, T 2 = 72 K, T 3 = 225 K and T 4 = 295 K. The multiple magnetic transitions offer interesting magnetocaloric effect (MCE) in this compound. Non-saturation behaviour of magnetization versus field isotherm at 4 K (even at 9 T magnetic fields) suggests the existence of competing ferro- and antiferromagnetic interactions in the compound. The magnetic entropy change (−ΔS M) associated with these multiple magnetic transitions is calculated from isothermal magnetization data using Maxwell equations. The MCE spreads over a wide span of temperature viz, ΔT = 257 K possessing a refrigerant capacity (RC) of 205 J/kg (for a magnetic field change of 0–5 T) with no thermal or magnetic hysteresis. This value of RC is nearly the same as that of the reference giant magnetocaloric material Gd5Ge2Si2 under the same condition. Hence, the wide temperature range MCE (including room temperature) of this material may be the result of multiple magnetic transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gschneidner Jr, K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)

    Article  ADS  Google Scholar 

  2. Gupta, S., Suresh, K.G., Nigam, A.K.: Observation of large positive magnetoresistance and its sign reversal in GdRhGe. J. Alloys Compd. 586, 600–604 (2014)

    Article  Google Scholar 

  3. Napoletano, M., Canepa, F., Manfrinettia, P., Merlo, F.: Magnetic properties and the magnetocaloric effect in the intermetallic compound GdFeSi, vol. 10 (2000)

  4. Pecharsky, V.K., Gschneidner Jr, K.A.: Giant magnetocaloric effect in (Gd5Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997)

    Article  ADS  Google Scholar 

  5. Giguere, A., Foldeaki, M., Schnelle, W., Gmelin, E.: Metamagnetic transition and magnetocaloric effect in ErCo2. J. Phys. Condens. Matter 11, 6969–6981 (1999)

    Article  ADS  Google Scholar 

  6. Hu, F.X., Shen, B.G., Sun, J.R., Zhang, X.X.: Great magnetic entropy change in La(Fe, M)13 (M=Si, Al) with Co doping. Chin. Phys. 9, 550–553 (2000)

    Article  ADS  Google Scholar 

  7. Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., Zhang, X.X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 78, 3675–3677 (2001)

    Article  ADS  Google Scholar 

  8. Williams, D.S., Shand, P.M., Pekarek, T.M., Skomski, R., Petkov, V., Leslie-Pelecky, D.L.: Magnetic transitions in disordered GdAl2. Phys. Rev. B. 68, 214404 (2003)

    Article  ADS  Google Scholar 

  9. de Campos, A., Rocco, D.L., Carvalho, A.M.G., Caron, L., Coelho, A.A., Gama, S., da Silva, L.M., Gandra, F.C.G., dos Santos, A.O., Cardoso, L.P., von Ranke, P.J., de Oliveira, N.A.: Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs. Nat. Mater. 5, 802–804 (2006)

    Article  ADS  Google Scholar 

  10. Zhang, Q., Li, B., Zhao, X.G., Zhang, Z.D.: Magnetic and reversible magnetocaloric properties of (Gd1−xDy)4Co3 ferrimagnets. J. Appl. Phys. 105, 053902 (2009)

    Article  ADS  Google Scholar 

  11. Liu, E.K., Zhang, H.G., Xu, G.Z., Zhang, X.M., Ma, R.S., Wang, W.H., Chen, J.L., Zhang, H.W., Wu, G.H., Feng, L., Zhang, X.X.: Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window. Appl. Phys. Lett. 102, 122405 (2013)

    Article  ADS  Google Scholar 

  12. Krautz, M., Skokov, K., Gottschall, T., Teixeira, C.S., Waske, A., Schultz, J.L.L., Gutfleisch, O.: Systematic investigation of Mn substituted La(Fe, Si)13 alloys and their hydrides for room-temperature magnetocaloric application. J. Alloys Compd. 598, 27–32 (2014)

    Article  Google Scholar 

  13. Stern-Taulats, E., Castillo-Villa, P.O., Ma∼nosa, L., Frontera, C., Pramanick, S., Majumdar, S., Planes, A.: Magnetocaloric effect in the low hysteresis Ni-Mn-In metamagnetic shape-memory Heusler alloy. J. Appl. Phys. 115, 173907 (2014)

    Article  ADS  Google Scholar 

  14. Gottschall, T., Skokov, K.P., Frincu, B., Gutfleisch, O.: Large reversible magnetocaloric effect in Ni-Mn-In-Co. Appl. Phys. Lett. 106, 021901 (2015)

    Article  ADS  Google Scholar 

  15. Fu, H., Hadimani, R.L., Ma, Z., Wang, M.X., Teng, B.H., Jiles, D.C.: Magnetocaloric effect in GdCoxAl2−x system for (0.15 ≤ x ≤ 1) compositions. J. Appl. Phys. 115, 17A914 (2014)

    Article  Google Scholar 

  16. Ma, Z., Shang, Y.F., Balfour, E.A., Wu, Y.H., Fu, H., Luo, Y., Wang, S.F., Teng, B.H., Han, M.G.: Magnetic and magnetocaloric properties of GdNi1−xAl2−x (0.35 ≤ x ≤ 0.70) alloys with multiphase structure. J. Mater. Sci. 51, 2134–2140 (2016)

    Article  ADS  Google Scholar 

  17. Rashid, T.P., Nallamuthu, S., Arun, K., Curlik, I., Ilkovic, S., Dzubinska, A., Reiffers, M., Nagalakshmi, R.: Magnetocaloric effect over a wide temperature range due to multiple magnetic transitions in GdNi0.8Al1.2. Eur. Phys. J. Plus 131, 156 (2016)

    Article  Google Scholar 

  18. Rashid, T.P., Nallamuthu, S., Arun, K., Curlik, I., Ilkovic, S., Dzubinska, A., Reiffers, M., Nagalakshmi, R.: Magnetocaloric properties of GdFe0.83Al3.02 multiphase alloy having multiple magnetic transitions. J. Mater. Chem. Phys. 180, 279–283 (2016)

    Article  Google Scholar 

  19. Hu, Z., Bao-Gen, S.: Magnetocaloric effects in RTX intermetallic compounds (R = Gd–Tm, T = Fe–Cu and Pd, X = Al and Si). Chin. Phys. B 24, 127504 (2015)

    Article  ADS  Google Scholar 

  20. Mayer, I., Felner, I.: Nowotny phases of M5 X 3 -type rare-earth silicides and germanides with boron. J. Less-Common Met. 37, 171–173 (1974)

    Article  Google Scholar 

  21. Al-Omari, I.A., Aich, S.: Magnetic and structural studies of GdFe2−xHfx alloys. J. Alloys Compd. 375, 31–33 (2004)

    Article  Google Scholar 

  22. Spedding, F.H., Hanak, J.J., Daane, A.H.: High temperature allotropy and thermal expansion of the rare-earth metals. J. Less Common- Metals. 3, 110–124 (1961)

    Article  Google Scholar 

  23. Dan’kov, Y.S., Tishin, A.M., Pecharsky, V.K., Gschneidner Jr, K.A.: Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 57, 3478–3490 (1998)

    Article  ADS  Google Scholar 

  24. Canepa, F., Cirafici, S., Napoletano, M.: Magnetic properties of Gd5 T 3 intermetallic compounds (T = Si, Ge, Sn). J. Alloys Compd. 335, L1–L4 (2002)

    Article  Google Scholar 

  25. Buschow, K.H.J.: Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40, 1179–1256 (1977)

    Article  ADS  Google Scholar 

  26. Buschow, K.H.J.: Crystallization and magnetic properties of amorphous Gd-Fe and Er-Fe alloys. J. Less-Common Met. 66, 89–97 (1979)

    Article  Google Scholar 

  27. Banerjee, S.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Article  ADS  Google Scholar 

  28. Wood, M.E., Potter, W.H.: General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics 25, 667–683 (1985)

    Article  ADS  Google Scholar 

  29. Provenzano, V., Shapiro, A.J., Shull, R.D.: Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature (London) 429, 853–857 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors, Mr. T. P. Rashid, thanks the Slovak government for awarding the National Slovak Scholarship for students. The help rendered by Mr. Nilesh Kulkarni and Mrs. Bhagyashree Chalke, Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai, India, in structure and compositional measurements is highly acknowledged. This work has been supported by the project VEGA 2/0070/12 and is the result of the Project implementation: University Science Park TECHNICOM for Innovation Applications Supported by Knowledge Technology, ITMS: 26220220182, supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nagalakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T. P., R., Curlik, I., Ilkovic, S. et al. Gd3Fe4Si Alloy for Magnetic Refrigeration Application in a Wide Temperature Range. J Supercond Nov Magn 30, 2283–2290 (2017). https://doi.org/10.1007/s10948-017-4031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4031-7

Keywords

Navigation