Skip to main content
Log in

Temperature Gradient Effects on Spin Torque in Double Barrier Magnetic Tunnel Junctions with a Non-magnetic Metal Spacer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Temperature gradient effects on spin torque (ST) are studied in MgO-based double-barrier magnetic tunnel junctions (DBMTJs) with a non-magnetic metal (NM) spacer. Using non-equilibrium Green’s function (NEGF) formalism, it is found that the thermal ST (TST) show oscillatory behavior with an increase of theNM spacer thickness. The results also show a magnitude enhancement of the TST in a DBMTJ compared with a single-barrier MTJ (SBMTJ). Such behavior is related to the existence of the quantum well states inside the NM spacer and resonant tunneling effect. Therefore, a faster magnetization switching is possible by TST in a DBMTJ without any bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  Google Scholar 

  2. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  3. Wang, C., Cui, Y.-T., Sun, J.Z., Katine, J.A., Buhrman R.A., Ralph, D.C.: Bias and angular dependence of spin-transfer torque in magnetic tunnel junctions. Phys. Rev. B 79, 224416 (2009)

    Article  ADS  Google Scholar 

  4. Kubota, H., Fukushima, A., Yakushiji, K., Nagahama, T., Yuasa, S., Ando, K., Maehara, H., Nagamine, Y., Tsunekawa, K., Djayaprawira, D.D., Watanabe, N., Suzuki, Y.: Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nat. Phys. 4, 37 (2008)

    Article  Google Scholar 

  5. Kaka, S., Pufall, M.R., Rippard, W.H., Silva, T.J., Russek, S.E., Katine, J.A.: Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389 (2005)

    Article  ADS  Google Scholar 

  6. Locatelli, N., Cros, V., Grollier, J.: Spin-torque building blocks. Nat. Mater. 13, 11 (2014)

    Article  ADS  Google Scholar 

  7. Thomas, L., Jan, G., Le, S., Wang, P.-K.: Quantifying data retention of perpendicular spin-transfer-torque magnetic random access memory chips using an effective thermal stability factor method. Appl. Phys. Lett. 106, 162402 (2015)

    Article  ADS  Google Scholar 

  8. Jia, X., Xia, K., Bauer, G.E.W.: Thermal spin transfer in Fe–MgO–Fe tunnel junctions. Phys. Rev. Lett. 107, 176603 (2011)

    Article  ADS  Google Scholar 

  9. Pushp, A., Phung, T., Rettner, C., Hughes, B.P., Yang, S.-H., Parkin, S.S.P.: Giant thermal spin-torque–assisted magnetic tunnel junction switching. Proc. Natl. Acad. Sci. 112, 6585 (2015)

    Article  ADS  Google Scholar 

  10. Ogrodnik, P., Bauer, G.E.W., Xia, K.: Thermally induced dynamics in ultrathin magnetic tunnel junctions. Phys. Rev. B 88, 024406 (2013)

    Article  ADS  Google Scholar 

  11. Slonczewski, J.C.: Initiation of spin-transfer torque by thermal transport from magnons. Phys. Rev. B 82, 054403 (2010)

    Article  ADS  Google Scholar 

  12. Theodonis, I., Kalitsov, A., Kioussis, N.: Spin transfer torque in double barrier magnetic tunnel junctions. J. Magn. Magn. Mater. 310, 2043 (2007)

    Article  ADS  Google Scholar 

  13. Diao, Z., et al.: Spin transfer switching in dual MgO magnetic tunnel junctions. Appl. Phys. Lett. 90, 132508 (2007)

    Article  ADS  Google Scholar 

  14. Vedyayev, A., Ryzhanova, N., Diney, B., Strelkov, N.: Resonant spin-torque in double barrier magnetic tunnel junctions. Phys. Lett. A 355, 243 (2006)

    Article  ADS  Google Scholar 

  15. Chen, C.H., Cheng, Y.H., Ko, J.W., Hsueh, W.J.: Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer. Appl. Phys. Lett. 107, 152401 (2015)

    Article  ADS  Google Scholar 

  16. Chen, C.H., Hsueh, W.J.: Enhancement of tunnel magnetoresistance in magnetic tunnel junction by a superlattice barrier. Appl. Phys. Lett. 104, 042405 (2014)

    Article  ADS  Google Scholar 

  17. Liu, R., Yang, S.-H., Jiang, X., Topuria, T., Rice, P.M., Rettner, C., Parkin, S.: Tunneling magnetoresistance oscillations due to charging effects in MgO double barrier magnetic tunnel junctions. Appl. Phys. Lett. 100, 012401 (2012)

    Article  ADS  Google Scholar 

  18. Mojumder, N.N., Agustine, C., Nikonov, D.E., Roy, K.: Effect of quantum confinement on spin transport and magnetization dynamics in dual barrier spin transfer torque magnetic tunnel junctions. J. Appl. Phys. 108, 104306 (2010)

    Article  ADS  Google Scholar 

  19. Chatterji, N., Tulapurkar, A.A., Muralidharan, B.: Enhancement of spin-transfer torque switching via resonant tunneling. Appl. Phys. Lett. 107, 232410 (2014)

    Article  ADS  Google Scholar 

  20. Daqiq, R., Ghobadi, N.: Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer. J. Magn. Magn. Mater. 410, 18 (2016)

    Article  ADS  Google Scholar 

  21. Jia, X., Wang, S., Qin, M.: Enhanced thermal spin transfer in MgO-based double-barrier tunnel junctions. New J. Phys. 18, 63012 (2016)

    Article  Google Scholar 

  22. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattice. Microst. 28, 253 (2000)

    Article  ADS  Google Scholar 

  23. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  24. Datta, D., Behin-Aein, B., Salahuddin, S., Datta, S.: Voltage asymmetry of spin transfer torques. IEEE Trans. Nano. 11, 261 (2012)

    Article  Google Scholar 

  25. Wilczynski, M., Barnas, J., Swirkowicz, R.: Free-electron model of current-induced spin-transfer torque in magnetic tunnel junctions. Phys. Rev. B 77, 054434 (2008)

    Article  ADS  Google Scholar 

  26. Wilczyński, M.: Thermopower, figure of merit and spin-transfer torque induced by the temperature gradient in planar tunnel junctions. J. Phys. Condens. Matter 23, 456001 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Daqiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daqiq, R. Temperature Gradient Effects on Spin Torque in Double Barrier Magnetic Tunnel Junctions with a Non-magnetic Metal Spacer. J Supercond Nov Magn 30, 1593–1597 (2017). https://doi.org/10.1007/s10948-016-3959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3959-3

Keywords

Navigation