Skip to main content
Log in

Anisotropy of Critical Current Density in LiFeAs Using Two-Band Ginzburg-Landau Theory

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, the temperature dependence of anisotropy parameter of critical current density for LiFeAs superconductor is calculated. The two-band Ginzburg-Landau theory, generalized for the anisotropic effective mass in different bands, is utilized. This paper reveals that in the absence of external magnetic field, two-band theory is able to give analytical expression for the temperature dependence of anisotropy parameter of critical current density. The results of microscopical simulations for Fermi surface of LiFeAs compound are taken into account during the calculations. It is shown that such a theory is in qualitative agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kamihara, Y., et al.: J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  2. Mazin, I. I., et al.: Phys. Rev. Lett. 101, 057003 (2008)

    Article  ADS  Google Scholar 

  3. Ren, Z. A., Zhao, Z. X.: Adv. Mater. 21, 4584 (2009)

    Article  Google Scholar 

  4. Askerzade, I.: Unconventional Superconductors: Anisotropy and Multiband Effects, p 177. Springer (2012)

  5. Shein, I. R., Ivanovskii, A.L.: Solid State Commun. 150, 152 (2010)

    Article  ADS  Google Scholar 

  6. Barzykin, V., Gorkov, L. P.: JETP Lett. 88, 131 (2008)

    Article  ADS  Google Scholar 

  7. Dolgov, O. V., Mazin, I. I., Parker, D.: Phys. Rev. B 79, 060502 (2008)

    Article  Google Scholar 

  8. Ummarino, G. A.: Phys. Rev. B 83, 092508 (2011)

    Article  ADS  Google Scholar 

  9. Benfanto, L., Capelluti, E., Castelliani, C.: Phys. Rev. B 80, 214522 (2009)

    Article  ADS  Google Scholar 

  10. Sasmal, K., Lv, B., Tang, Z., et al.: Phys. Rev. B 81, 144512 (2010)

    Article  ADS  Google Scholar 

  11. Borisenko, S. V., et al.: Phys. Rev. Lett. 105, 067002 (2009)

    Article  ADS  Google Scholar 

  12. Wei, A., Chen, A., Sasmal, L., et al.: Phys. Rev. B 81, 134527 (2010)

    Article  ADS  Google Scholar 

  13. Vander Berk, C. J., et al.: Supercond. Sci. Technol. 25, 084010 (2012)

    Article  ADS  Google Scholar 

  14. Konczykowski, M., et al.: Phys. Rev. B 84, 180514R (2011)

    Article  ADS  Google Scholar 

  15. Askerzade, I. N., Gencer, A, Guclu, N.: Supercond. Sci. Technol. 15, L13 (2002)

    Article  ADS  Google Scholar 

  16. Askerzade, I. N., Tanatar, B.: Phys. C 384(3), 404 (2003)

    Article  ADS  Google Scholar 

  17. Askerzade, I. N.: Tech. Phys. 55, 896 (2010)

    Article  Google Scholar 

  18. Askerzade, I. N.: Modern Phys. Lett. B 17, 11–18 (2003)

    Article  ADS  Google Scholar 

  19. Askerzade, I. N.: Physics Uspekhi 52(10), 977 (2009)

    Article  ADS  Google Scholar 

  20. Askerzade, I. N.: Materials Science-Poland 32(3), 465 (2014)

    Article  ADS  Google Scholar 

  21. Askerzade, I. N.: Materials Science-Poland 33(3), 644 (2015)

    Article  Google Scholar 

  22. Askerzade, I. N.: J. Supercond. Nov. Magn. 28(2), 319 (2015)

    Article  Google Scholar 

  23. Abrikosov, A. A.: Fundamentals Theory of Metals, p 680. Hollanda, Amsterdam (1988)

    Google Scholar 

  24. Tinkham, M.: Introduction to superconductivity. Science, 454 (2004)

  25. Askerzade, I. N., Tagiyeva (Askerbeyli), R.T.: Supercond. Sci. Technol. 25, 095007 (2012)

    Article  ADS  Google Scholar 

  26. Cho, K., et al.: Phys. Rev. B 83, 060502 (2011)

    Article  ADS  Google Scholar 

  27. Blatter, G., Feigelman, M. V., Geshkenbein, B. B., Larkin, A. I., Vinokur, V. M.: Rev. Mod. Phys. Lett. 66, 1125 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study partially supported by TUBITAK research project 110T748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Askerzade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askerzade, I.N. Anisotropy of Critical Current Density in LiFeAs Using Two-Band Ginzburg-Landau Theory. J Supercond Nov Magn 30, 1655–1658 (2017). https://doi.org/10.1007/s10948-016-3769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3769-7

Keywords

Navigation