Skip to main content
Log in

Analytical Characterization of Hematite / Magnetite Ferrofluid Nanocomposites for Hyperthermia Purposes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Herein, novel ferrofluid nanocomposites xFe2 O 3/(1 −x)Fe 3 O 4 with different ratios of x (0.0 ≤x≤ 1.0) from magnetite and hematite nanoparticles (NPs) were prepared via a sonochemical method, for hyperthermia purposes. Various analytical and characterization techniques have been used to analyze and characterize the prepared ferrofluid nanocomposites. XRD confirms the formation of two separate phases of nanocomposite components with average crystallite size ranging from 12 to 30 nm. The crystallite size was tuned via the hematite weight fraction of x (wt %) showing the lowest size at x= 0.2. FTIR shows that the band at 627 cm −1 could be referred to the Fe–O stretching vibrations and the band at 535 cm −1 could be assigned to Fe–O in Fe 2 O 3. HRTEM and FESEM show the spherical and rod-like shape of magnetite and hematite, respectively, with an average particle size of 12 nm for Fe 3 O 4 NPs and 11 nm for Fe 2 O 3 NPs. XRF confirms that the nominal and chemical compositions are close. VSM shows that the prepared ferrofluid nanocomposites exhibit almost superparamagnetic behavior at which the magnetic parameters vary with the weight fraction of x (wt %), in addition to superior magnetic responsively with the saturation magnetization value arising from 0.74 to 67.86 emu/g. Analytical thermal analysis techniques exhibit that the ferrofluid nanocomposites show a high degree of thermal stability. It is observed that the composition 0.2 shows different behavior and superior properties rather than others. Therefore, this composition is considered as the optimum ratio for different applications particularly for hyperthermia purposes. The hyperthermia behavior of 0.2Fe 2 O 3/0.8Fe 3 O 4 nanocomposite was checked primary by using a home-made induction coil at a tested frequency of 50 Hz. It was found that, 50 Hz frequency induced hyperthermia temperature of about 43 C at very low magnetic field within 20 min. Finally, we recommend this nanocomposite due to its high magnetization, thermal stability, and acceptable biocompatibility for cancer treatment by localized hyperthermia technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Roca, A.G., Morales, M.P., O’Grady, K., Serna, C.J.: Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17, 2783–2788 (2006)

    Article  ADS  Google Scholar 

  2. Bhattacharya, S., Roychowdhury, A., Tiwari, V., Prasad, A., Ningthoujam, R.S., Patel, A.B., Das, D., Nayar, S.: Effect of biomimetic templates on the magnetostructural properties of Fe 3 O 4 nanoparticles. RSC Adv. 5, 13777 (2015)

    Article  Google Scholar 

  3. Blaney, L.: Magnetite (Fe3O4): Properties, synthesis, and applications. Volume 15 - (2007). Paper 5. (2007)

  4. Chapa Gonzalez, C., Martínez Pérez, C.A., Martínez Martínez, A., Olivas Armendáriz, I., Zavala Tapia, O., Martel-Estrada, A., García-Casillas, P.E.: Development of antibody-coated magnetite nanoparticles for biomarker immobilization. J. Nanomater. 2014, 1–7 (2014)

    Article  Google Scholar 

  5. Lee, J.B., Kim, H.J., Lužnik, J., Jelen, A., Pajić, D., Wencka, M., Jagličić, Z., Meden, A., Dolinšek, J.: Synthesis and magnetic properties of hematite particles in a “nanomedusa” morphology. J. Nanomater. 2014, 1–9 (2014)

    Google Scholar 

  6. Wang, D., Jiang, L., Wei, X., Song, C.: Construction of Fe3O4/Fe2O3 composite hollow spheres and their properties. Mater. Lett. 138, 164–166 (2015)

    Article  Google Scholar 

  7. Mohammadi, A., Barikani, M.: Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles coated with thiodiglycol. Mater. Charact. 90, 88–93 (2014)

    Article  Google Scholar 

  8. Hyeon, T.: Chemical synthesis of magnetic nanoparticles. Chem. Commun. 8, 927 (2003)

    Article  Google Scholar 

  9. Garaio, E., Collantes, J.M., Garcia, J.A., Plazaola, F., Mornet, S., Couillaud, F., Sandre, O.: A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia. J. Magn. Magn. Mater. 368, 432–437 (2014)

    Article  ADS  Google Scholar 

  10. Jiang, Q.L., Zheng, S.W., Hong, R.Y., Deng, S.M., Guo, L., Hu, R.L., Gao, B., Huang, M., Cheng, L.F., Liu, G.H., Wang, Y.Q.: Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl. Surf. Sci. 307, 224–233 (2014)

    Article  Google Scholar 

  11. Shah, R.R., Davis, T.P., Glover, A.L., Nikles, D.E., Brazel, C.S.: Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater. 387, 96–106 (2015)

    Article  ADS  Google Scholar 

  12. Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., Nadi, B., Rahman, M.Z., Amin, J.: Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533– 7548 (2013)

    Article  Google Scholar 

  13. Ocana, M.R., Rodriquez-Clemente, R., Serna, C.J.: Uniform colloidal particles in solution: formation mechanisms. Adv. Mater., 212–216 (1995)

  14. Ahmed, M.A., Imam, N.G., Abdelmaksoud, M.K., Saeid, Y.A.: Magnetic transitions and butterfly-shaped hysteresis of Sm–Fe-Al-based perovskite-type orthoferrite. J. Rare Dearth 33(9), 965 (2015)

    Article  Google Scholar 

  15. Ahmed, M.A., Okasha, N., Imam, N.G.: Modification of composite ceramics properties via different preparation techniques. J. Magn. Magn. Mater. 324, 4136–4142 (2012)

    Article  ADS  Google Scholar 

  16. Ahmed, M.A., Okasha, N., Imam, N.G.: Advanced imaging techniques for characterization of 0.5BaTiO 3/0.5Ni 0.5Zn 0.5Fe 2 O 4 multiferroic nanocomposite. J. Alloys Compd. 557, 130 (2013)

    Article  Google Scholar 

  17. Elzinga, E.J., Sparks, D.L.: Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of Dphosphate surface complexation. J. Colloid Interface Sci. 308, 53–70 (2007)

    Article  Google Scholar 

  18. Mostafa, N.Y., Mohamed, M.B., Imam, N.G., Alhamyani, M., Heiba, Z.K.: Electrical and optical properties of hydrogen titanate nanotube/PANI Dhybrid nanocomposites. Colloid and Polymer Science - Springer (2015). doi:10.1007/s00396-015-3769-3

Download references

Acknowledgments

We acknowledge all supports given by both Chemistry and Physics Departments in Cairo University and Nuclear Research Centre, Atomic Energy Authority. Further, N.G. Imam acknowledges the Italian Sincrotrone Trieste- (Elettra), and the head of XAFS Beamline (G. Aquilanti) for providing the nice atmosphere to write and review the paper carefully. Also, many thanks to S.I. El-Dek for her kind help. Finally, many thanks to IAEA, SESAME, and ICTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Imam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, M.A., Ahmed, M.A., Imam, N.G. et al. Analytical Characterization of Hematite / Magnetite Ferrofluid Nanocomposites for Hyperthermia Purposes. J Supercond Nov Magn 29, 2899–2916 (2016). https://doi.org/10.1007/s10948-016-3587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3587-y

Keywords

Navigation