Skip to main content
Log in

Chemical Solution-Derived YBa2Cu3.3 O 7-d /CuO Multilayer Structure-Coated Conductors on Oxide-Buffered Metallic Tapes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

An approach based on the insertion of a CuO layer in YBa2Cu3 O 7-d (YBCO)-coated conductor was proposed and demonstrates high current-carrying ability. The multilayer architecture was deposited on oxid-buffered Hastelloy tapes using a metal organic deposition (MOD) process (low-fluorine solution route). It was revealed that the introduction of a CuO layer was effective to avoid the presence of a-axis grain and pores of the YBCO films, which were frequently observed in multilayer films. Presently, the thickness of the multilayer films was almost 1.5 µm. Based on the improvements of the surface quality and c-oriented texture which were proved by X-ray (??-2??, f, and ?)-scan, AFM images, and SEM (surface and cross-section) images, the critical current density (Jc) of YBCO films with middle CuO and bottom CuO are 2.0 MA/cm 2 and 2.5 MA/cm 2 (at 77 K, self-field), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Foltyn, S.R., Jia, Q.X., Arendt, P.N., Kinder, L., Fan, Y., Smith, J.F.: Appl. Phys. Lett. 75, 3692 (1999)

    Article  ADS  Google Scholar 

  2. Rupich, M.W., et al.: IEEE Trans. Appl. Supercond. 13, 2458 (2003)

    Article  Google Scholar 

  3. Foltyn, S.R., Civale, L., MacManus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M.: Nat. Mater. 6, 631–642 (2007)

    Article  ADS  Google Scholar 

  4. Larbalestier, D., Gurevich, A., Feldmann, D.M., Polyanskii, A.: Nature 414, 368–377 (2001)

    Article  ADS  Google Scholar 

  5. Rupich, M.W., Li, X., Sathyamurthy, S., Thieme, C., Fleshler, S.: Phys. C 471, 919–923 (2011)

    Article  ADS  Google Scholar 

  6. Kitazawa, K.: Jpn. J. Appl. Phys. 51, 010001 1–14 (2012)

    Article  ADS  Google Scholar 

  7. Trociewitz, U.P., Canassy, M.D., Hannion, M., Hilton, D.K., Noyes, P., Viouchkov, Y., Jaroszynski, J., Weijers, H.W., Larbalestier, D.C.: Appl. Phys. Lett. 99, 202506 1–3 (2011)

    Article  Google Scholar 

  8. Wu, X.D., Foltyn, S.R., Arendt, P.N., et al.: Appl. Phys. Lett. 67, 2397–2399 (1995)

    Article  ADS  Google Scholar 

  9. Goyal, A., Norton, D.P., Budail, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., Sikka, V.K.: Appl. Phys. Lett. 6, 1795–1797 (1996)

    Article  ADS  Google Scholar 

  10. McIntyre, P.C., Cima, M.J., Smith, J.A. Jr., Hallock, R.B., Siegal, M.P., Phillips, J.M.: J. Appl. Phys. 74, 1868–1877 (1992)

    Article  ADS  Google Scholar 

  11. Yoo, J., Kim, Y.K., Chang, K., Ko, J., Wang, X., Dou, S.X.: IEEE. Trans. Appl. Supercond. 17, 3336–3369 (2007)

    Article  ADS  Google Scholar 

  12. Dawley, J.T., Clem, P.G., Boyle, T.J., Ottley, L.M., Overmyer, D.L., Siegal, M.P.: Phys. C 402, 143–151 (2004)

    Article  ADS  Google Scholar 

  13. Fuji, H., et al.: Phys. C 412–414, 916–919 (2004)

    Article  Google Scholar 

  14. Xu, Y., Goyal, A., Leonard, K., et al.: J. Am. Ceram. Soc. 89(3), 914–920 (2006)

    Article  Google Scholar 

  15. Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M.: Appl. Phys. Lett. 69(12), 1795–1797 (1996)

    Article  ADS  Google Scholar 

  16. Araki, T., Hirabayashi, I.: Supercon. Sci. Tech. 16(203), 71–94

  17. Araki, T., Hirabayashi, I., Shibata, J., Ikuhara, Y.: Supercond. Sci. Technol. 15, 913–916 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is partly sponsored by the Science and Technology Commission of Shanghai Municipality (13111102300 and 14521102800), the National Natural Science Foundation of China (11174193 and 51202141), and the Ministry of Science and Technology of China (973 Projects, 2011CBA00105). This work was supported by the Shanghai Science and Technology Committee (No.16521108400) and Analysis & Measurement Center and Laboratory for Microstructures of Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Bing Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, CW., Yang, WT., Liu, ZY. et al. Chemical Solution-Derived YBa2Cu3.3 O 7-d /CuO Multilayer Structure-Coated Conductors on Oxide-Buffered Metallic Tapes. J Supercond Nov Magn 29, 2269–2274 (2016). https://doi.org/10.1007/s10948-016-3580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3580-5

Keywords

Navigation