Skip to main content
Log in

TM Wave Resonant Peaks in Defect-Free Multilayer Structures Containing Nano-Scale Y123 Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the ultraviolet region and by using transfer matrix method, the transmission spectra of electromagnetic waves through one-dimensional quasiperiodic photonic structures consisting of high-temperature yttrium barium copper oxide (Y123) superconductor and strontium titanate (STO) dielectric layers are studied theoretically. It is shown that for TE polarization at oblique incidence two band gaps are created, while for TM polarization three band gaps are produced. The edges of both polarizations shift to higher wavelengths by increasing incident angles. Also, for angles of incidence greater than 78, the second gap for TM-polarized light is eliminated. It is also found that in the supposed structure the number of PBGs can be modulated by the thickness of dielectric layer, while it is nearly insensitive to the thickness of superconductor layer. Interestingly, for the incidence angles other than normal incidence the structure can exhibit some narrow resonant peaks near wavelengths where the electric permittivity of the superconductor layer changes sign. These resonant peaks are only for TM polarization and not present for TE polarization. This structure can act as a very compact polarization sensitive splitters and defect-free multichannel narrowband tunable filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levine, D., et al.: Phys. Rev. B 34, 596 (1986)

    Article  ADS  Google Scholar 

  2. Liu, W. L., et al.: Phys. B: Condens. Matter 404, 4237 (2009)

    Article  ADS  Google Scholar 

  3. Zhang, S., et al.: Proc. SPIE 7221, 722113 (2009)

    Article  Google Scholar 

  4. Lugo, J. E., et al.: Opt. Express 17, 3036 (2009)

    Article  ADS  Google Scholar 

  5. Shechtman, D., et al.: Phys. Rev. Lett. 53, 1951 (1984)

    Article  ADS  Google Scholar 

  6. Janot, C.: Quasicrystals. Clarendon Press, Oxford (1994)

    Book  MATH  Google Scholar 

  7. Macia, E.: Ferroelectrics 250, 401 (2001)

    Article  Google Scholar 

  8. Lusk, D., et al.: Opt. Commun. 198, 273 (2001)

    Article  ADS  Google Scholar 

  9. Peng, R. W., et al.: Appl. Phys. Lett. 80, 3063 (2002)

    Article  ADS  Google Scholar 

  10. Macia, E.: Phys. Rev. B 63, 205421 (2001)

    Article  ADS  Google Scholar 

  11. Aissaoui, M., et al.: PIER 59, 69 (2006)

    Article  Google Scholar 

  12. Cojocaru, E.: Appl. Opt. 41, 747 (2002)

    Article  ADS  Google Scholar 

  13. Zhang, H., et al.: Optik 124, 4182 (2013)

    Article  ADS  Google Scholar 

  14. Zhang, Y., et al.: Opt. Commun. 338, 168 (2015)

    Article  ADS  Google Scholar 

  15. Tang, Z., et al.: Opt. Commun. 356, 21 (2015)

    Article  ADS  Google Scholar 

  16. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)

    Google Scholar 

  17. Lee, H. M., Wu, J. C.: J. Appl. Phys. 107, 09149 (2010)

    Google Scholar 

  18. Aly, A., et al.: Mater. Chem. Phys. 113, 382 (2009)

    Article  Google Scholar 

  19. Lin, W. H., et al.: Opt. Express 18, 27155 (2010)

    Article  ADS  Google Scholar 

  20. Feng, L., et al.: J. Appl. Phys. 97, 073104 (2005)

    Article  ADS  Google Scholar 

  21. van Duzer, T., et al.: Principles of Superductive Devices and Circuits. Edward Arnold, London (1981)

    Google Scholar 

  22. Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988)

    Google Scholar 

  23. van Benthem, K., et al.: J. Appl. Phys. 90, 6156 (2001)

    Article  ADS  Google Scholar 

  24. Mourachkine, A.: Room-Temperature Superconductivity, 1st edn. Cambridge International Science Publishing, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, H. TM Wave Resonant Peaks in Defect-Free Multilayer Structures Containing Nano-Scale Y123 Superconductors. J Supercond Nov Magn 29, 1767–1772 (2016). https://doi.org/10.1007/s10948-016-3500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3500-8

Keywords

Navigation