Skip to main content
Log in

Structural, Magnetic, and Optical Performance of Al and Mo Doped GaFeO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Al-and Mo-doped GaFeO3 (Ga1−x Al x FeO3, GaFe1−x Mo x O3) multiferroic systems were fabricated by double-sintering ceramic method. Single phase of orthorhombic structure with space group Pc21n has been obtained. The structure parameters, bond length, and preferential cation distribution were derived from analyzing XRD applying Rietveld method. Rietveld refinement reveals the decrease and increase of the lattice parameters upon Al and Mo doping, respectively. The magnetic properties were studied thoroughly both doped systems. Curie temperatures (T C) change with increasing Al content amount and reach their maximum value for Al-substituted amounts 15 and 25 % (228 K). On other hand, as the amount of Mo increases, T c for GaFeO3, (GFO) decreases. Photoluminescence (PL) spectroscopic measurements were carried out at room temperature, under 330 nm excitation, to sense the reflection of Al and Mo substitutions on the investigated GFO lattice. The presence of the site disorder and cation redistribution was confirmed by PL emission spectral analysis. Fe 3+ ions at the tetrahedral and octahedral sites show entirely different luminescence. It was also inferred from the spectra that, at lower Mo content (x), the dominated higher intense PL emissions come from tetrahedrally coordinated Ga3+ ions, while in Al-doped GFO at higher Al content (x), the emissions come mainly from the octahedrally sited ions. The luminescent emissions will open up the opportunity of GFO-doped transition metals for both further fundamental studies and technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fiebig, M.: J. Phys. D: Appl. Phys. 38, R123 (2005)

    Article  ADS  Google Scholar 

  2. Mao, X., Wang, W., Chen, X., Lu, Y.: Appl. Phys. Lett. 95, 082901 (2009)

    Article  ADS  Google Scholar 

  3. Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  4. Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthelemy, A., Fert, A.: Nat. Mater. 6, 296–302 (2007)

    Article  ADS  Google Scholar 

  5. Arima, T., Higashiyama, D., Kaneko, Y., He, J.P., Goto, T., Miyasaka, S., Kimura, T., Oikawa, K., Kamiyama, T., Kuumai, R., Tokura, Y.: Phys. Rev. B 70, 064426 (2004)

    Article  ADS  Google Scholar 

  6. Saha, R., Shireen, A., Bera, A.K., Shirodkar, S.N., Sundarayya, Y., Kalarikkal, N., Yusuf, S.M., Waghmare, U.V., Sundaresan, A., RRao, C.N.: J. Solid State Chem. 184, 494–501 (2011)

    Article  ADS  Google Scholar 

  7. Roy, A., Prasad, R., Auluck, S., Garg, A.: J. Appl. Phys. 111, 043915 (2012)

    Article  ADS  Google Scholar 

  8. Bakr Mohamed, M., Senyshyn, A., Ehrenberg, H., Fuess, H.: J. Alloys Compd. 492, L20 (2010)

    Article  Google Scholar 

  9. Mohamed, M.B., Wang, H., Fuess, H.: J. Phys. D: Appl. Phys 43, 455409 (2010)

    Article  Google Scholar 

  10. Mohamed, M.B., Hinterstein, M., Fuess, H.: Matt. Lett. 85, 102 (2012)

    Article  Google Scholar 

  11. Mohamed, M.B., Fuess, H.: J. Magn. Magn. Mater. 323, 2090 (2011)

    Article  ADS  Google Scholar 

  12. Ahmed, M.A., Imam, N.G., El-Dek, S.I., Safaa K. El-Mahy.: J. Supercond. Nov. Magn. (2015) 28(8), 2417 (2015)

    Article  Google Scholar 

  13. Amritendu, R., Somdutta, M., Surajit, S., Sushil, A., Rajendra, P., Rajeev, G., Ashish, G.: J. Phys. Condens. Matter 43, 24 (2012)

    Google Scholar 

  14. Rodríiguez-Carvajal, J.: Phys. B (Amsterdam, Neth.) 192, 55 (1993)

    Article  Google Scholar 

  15. Imam, N.G., Bakr Mohamed, M.: Superlattices Microstruct. 73, 203 (2014)

    Article  ADS  Google Scholar 

  16. Szymański, K., Dobrzyński, L., Bakr, M., Satua, D., Olszewski, W., Parzych, G., Fuess, H.: Phase Transit. 10, 824 (2010)

    Article  Google Scholar 

  17. Walker, J.D.S., Grosvenor, A.P.: J. Solid State Chem. 197, 147–153 (2013)

    Article  ADS  Google Scholar 

  18. Kalashnikova, A., Pisarev, R., Bezmaternykh, L., Temerov, V., Kirilyuk, A., Rasing, T.: JETP Lett. 81, 452 (2005)

    Article  ADS  Google Scholar 

  19. Fahlam, B.D.: Material chemistry, p. 42. Springer, The Netherlands (2007)

    Google Scholar 

  20. Nimai, P., Santosh K.G., Kaushik, S., Mithlesh, K., Kadama, R.M., Natarajana, V.: Dalton Trans. 43, 9313 (2014)

    Article  Google Scholar 

  21. Dhanasekaran, P., Gupta, N.M.: Int. J. hydrogen energy 3(7), 4897–4907 (2012)

    Article  Google Scholar 

  22. Sun, Z.H., Dai, S., Zhou, Y.L., Cao, L.Z., Chen, Z.H.: Thin Solid Films 516, 7433–7436 (2008)

    Article  ADS  Google Scholar 

  23. Ogawa, Y., Kaneko, Y., He, J.P., Yu, X.Z., Arima, T., Tokura, Y.: Phys. Rev. Lett. 92, 047401 (2004)

    Article  ADS  Google Scholar 

  24. Tanaka1, K., Nakashima, S., Fujita, K., Hirao, K.: Phys. J. Condens. Matter 15, L469 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bakr Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B. & Imam, N.G. Structural, Magnetic, and Optical Performance of Al and Mo Doped GaFeO3 . J Supercond Nov Magn 29, 1647–1655 (2016). https://doi.org/10.1007/s10948-016-3456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3456-8

Keywords

Navigation