Skip to main content
Log in

Pressure-Induced Insulator to Metal Transition and Superconductivity of the Inert Gases

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We present a comprehensive computational study of the transition from insulator to metal for the inert gases. The linearized augmented plane wave (LAPW) method, with the local density approximation (LDA) and generalized gradient approximation (GGA), was applied to study these transitions. Our calculations of the inert gases determined that the total energy of the fcc structure to be lower than the total energy in the bcc structure. This is in agreement with the experimentally verified results of the inert gases. We have confirmed that under high enough pressure, the inert gases, Ar, Kr, Xe, and Rn, transition from an insulator to a metal. Furthermore, using the Gaspari-Gyorffy-McMillan theory of superconductivity, we find significant signs of superconductivity for these materials under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Herzfeld, K.: Phys. Rev. 29(5), 701 (1927). doi:10.1103/PhysRev.29.701

    Article  ADS  Google Scholar 

  2. Reichlin, R., Brister, K., McMahan, A., Ross, M., Martin, S., Vohra, Y., Ruoff, A.: Phys. Rev. Lett. 62(6), 669 (1989). doi:10.1103/PhysRevLett.62.669

    Article  ADS  Google Scholar 

  3. Eremets, M., Gregoryanz, E., Struzhkin, V., Mao, H., Hemley, R., Mulders, N., Zimmerman, N.: Phys. Rev. Lett. 85(13), 2797 (2000) [http://www.ncbi.nlm.nih.gov/pubmed/10991236]

    Article  ADS  Google Scholar 

  4. Goettel, K., Eggert, J., Silvera, I., Moss, W.: Phys. Rev. Lett. 62(6), 665 (1989). doi:10.1103/PhysRevLett.62.665

    Article  ADS  Google Scholar 

  5. McMahan, A.K.: Phys. Rev. B 33(8), 5344 (1986). doi:10.1103/PhysRevB.33.5344

    Article  ADS  Google Scholar 

  6. Polian, A., Itie, J., Dartyge, E., Fontaine, A., Tourillon, G.: Phys. Rev. B 39(5), 3369 (1989) [http://prb.aps.org/abstract/PRB/v39/i5/p3369_1]

    Article  ADS  Google Scholar 

  7. Bacalis, N., Papaconstantopoulos, D., Pickett, W.: Phys. Rev. B 38(9), 6218 (1988). doi:10.1103/PhysRevB.38.6218

    Article  ADS  Google Scholar 

  8. Andersen, O.K.: Phys. Rev. B 12(8), 3060 (1975). doi:10.1103/PhysRevB.12.3060

    Article  ADS  Google Scholar 

  9. Wei, S.h., Krakauer, H.: Phys. Rev. Lett. 55(11), 1200 (1985). doi:10.1103/PhysRevLett.55.1200

    Article  ADS  Google Scholar 

  10. Singh, D.: Phys. Rev. B 43(8), 6388 (1991). doi:10.1103/PhysRevB.43.6388

    Article  ADS  Google Scholar 

  11. Hedin, L., Lundqvist, B.I.: J. Phys. C: Solid State Phys. 4 (14), 2064 (1971). doi:10.1088/0022-3719/4/14/022 [http://stacks.iop.org/0022-3719/4/i=14/a=022?key= crossref.334ee45c6e999b9902d2e8596d9cea51]

    Article  ADS  Google Scholar 

  12. Perdew, J.P., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Phys. Rev. B 46(11), 6671 (1992). doi:10.1103/PhysRevB.46.6671

    Article  ADS  Google Scholar 

  13. Kittel, C.: Introduction to Solid State Physics. Wiley (2005). http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000803.html

  14. Kwon, I., Collins, L., Kress, J., Troullier, N.: Phys. Rev. B 52(21), 15165 (1995). doi:10.1103/PhysRevB.52.15165

  15. Hama, J., Suito, K.: Phys. Lett. A 140(3), 117 (1989). doi:10.1016/0375-9601(89)90503-3 [http://linkinghub.elsevier.com/retrieve/pii/0375960189905033]

    Article  ADS  Google Scholar 

  16. Chacham, H., Zhu, X., Louie, S.: Phys. Rev. B 46(11), 6688 (1992). doi:10.1103/PhysRevB.46.6688

    Article  ADS  Google Scholar 

  17. Veeser, L., Ekdahl, C., Oona, H., Rodriguez, P., Schmitt, G., Solem, J., Younger, S., Baker, S., Hudson, C., Lewis, W., Marshall, B., Turley, W., Bykov, A., Boriskov, G., Dolotenko, M., Egorov, N., Kolokolchikov, N., Kozlov, M., Kuropatkin, Y., Volkov, A.: Megagauss Magnetic Field Generation, its Application to Science and Ultra-High Pulsed-Power Technology - Proceedings of the VIIIth International Conference on Megagauss Magnetic Field Generation and Related Topics. doi:10.1142/9789812702517_0045, pp 237–240. World Scientific Publishing Co. Pte. Ltd, Singapore (2004). http://eproceedings.worldscinet.com/9789812702517/9789812702517_0045.html

  18. Gaspari, G., Gyorffy, B.: Phys. Rev. Lett. 28(13), 801 (1972). doi:10.1103/PhysRevLett.28.801

    Article  ADS  Google Scholar 

  19. McMillan, W.: Phys. Rev. 167(2), 331 (1968). doi:10.1103/PhysRev.167.331

    Article  ADS  Google Scholar 

  20. Moruzzi, V., Janak, J., Schwarz, K.: Phys. Rev. B 37(2), 790 (1988). doi:10.1103/PhysRevB.37.790

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Research funded in part by DGE 0638680, 07/07-06/12, SUNRISE: Schools, University ’N’ (and) Resources In the Sciences and Engineering-A NSF/GMU GK-12 Fellows Project, as well as DOE grant DE-FG02-07ER46425 and ONR grant N00014-09-1-1025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Koufos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koufos, A.P., Papaconstantopoulos, D.A. Pressure-Induced Insulator to Metal Transition and Superconductivity of the Inert Gases. J Supercond Nov Magn 28, 3525–3533 (2015). https://doi.org/10.1007/s10948-015-3213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3213-4

Keywords

Navigation