Skip to main content
Log in

Superconductor Core Effect of the Body Centered Orthorhombic Nanolattice Structure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, we investigate the magnetization and susceptibility behaviors of the antiferromagnetic YBCO-7 superconductor within the effective field theory. Since the crystal structure of the YBCO-7 is orthorhombic, we consider the body-centered orthorhombic nanolattice structure (BCOLS) for the theoretical calculation. We find that the core of the BCOLS exhibits superconductivity hysteresis behavior. This behavior of the core is in good agreement with the experimental hysteresis results of orthorhombic YBa2Cu3O7(YBCO-7) superconductor. Hence, the core of the BCOLS behaves as a superconductor. This superconductivity hysteresis behavior of the core causes a fluctuation on the hysteresis curves and secondary susceptibility peak on the total antiferromagnetic BCOLS. We call this effect “type II superconductor core effect (SCE).” Moreover, the superconductivity states of the core were obtained. The susceptibility of the core of the BCOLS has two peaks at the critical field points. The primary susceptibility peak appears at H c1 and defines the region of the Meissner state (H < H c1) of the core. The secondary susceptibility peak appears at H c2 and defines the region of the vortex state (H c1 < H < H c2) of the core. For the H > H c2, the core has a normal state. Therefore, the susceptibility peaks of the BCOLS define the regions of its superconducting states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boekema, C., Browne, M.C., Teichgraeber, C.: Field (direction) dependence of AF magnetism in YBCO vortex states: a MaxEnt- μSR study. J. Phys. 150, 052022 (2009)

    Google Scholar 

  2. Masuda, Y., Teranishi, R., Matsuyama, M., Yamada, K., Kiss, T., Munetoh, S., Yoshizumi, M., Izumi, T.: Flux pinning properties of YBCO films with nano-particles by TFA-MOD method. Phys. Proc. 27, 240–243 (2012)

    Article  ADS  Google Scholar 

  3. Çakır, B., Aydıner, A., Basoglu, M., Yanmaz, E.: The effect of Y2O3 on AC susceptibility measurements of MPMG YBCO. J. Supercond. Nov. Magn. 26, 937–941 (2013)

    Article  Google Scholar 

  4. Hamrita, A., Ben Azzouz, F., Dachraoui, W., Ben Salem, M.: The effect of silver inclusion on superconducting properties of YBa2Cu3O y prepared using planetary ball milling. J. Supercond. Nov. Magn. 26, 879–884 (2013)

    Article  Google Scholar 

  5. Kandyel, E., Salem, A., Alqarni, A.: Synthesis and characterization of doped YBa2Cu4O8 superconductor by Cd +2. J. Supercond. Nov. Magn. 26, 3363–3368 (2013)

    Article  Google Scholar 

  6. Kumar, N. D., Rajasekharan, T.: Preform optimization in infiltration growth process: An efficient method to improve the superconducting properties of YBa2Cu3O7−δ . Phys. C 495, 55–65 (2013)

    Article  ADS  Google Scholar 

  7. Altinkok, A., Kiliç, K., Olutaş, M., Kiliç, A.: Magnetovoltage measurements and hysteresis effects in polycrystalline superconducting Y1Ba2Cu3O7−x/Ag in weak magnetic fields. J. Supercond. Nov. Magn. 26, 3085–3098 (2013)

    Article  Google Scholar 

  8. Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. J. Exp. Theor. Phys. 5, 1174–1182 (1957)

    Google Scholar 

  9. Rosenstein, B., Li, D.: Ginzburg-Landau theory of type II superconductors in magnetic field. Rev. Mod. Phys. 82, 109–167 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Pinera, V.I., Cruz, C.M., Abreu, Y., Leyva, A.: Monte Carlo simulation study of the positron contribution to displacements per atom production in YBCO superconductors. Nucl. Inst. Methods Phys. Res. B 266, 4899–4902 (2008)

    Article  ADS  Google Scholar 

  11. Li, M.S.: Paramagnetic Meissner effect and related dynamical phenomena. Phys. Rep. 376, 133–223 (2003)

    Article  ADS  Google Scholar 

  12. Demler, E., Hanke, W., Zhang, S.C.: SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76, 909–969 (2004)

    Article  ADS  Google Scholar 

  13. Padilha, I.T., De Sousa, J.R., Neto, M.A., Salmon, O.R., Viana, J.R.: Thermodynamics properties of copper-oxide superconductors described by an Ising frustrated model. Phys. A 392, 4897–4904 (2013)

    Article  MathSciNet  Google Scholar 

  14. Avella, A., Mancini, F., Mancini, F.P., Plekhanov, E.: Emery vs. Hubbard model for cuprate superconductors: a composite operator method study. Eur. Phys. J. B 86, 40115 (2013)

    Article  MathSciNet  Google Scholar 

  15. Spalek, J.: Theory of unconventional superconductivity in strongly correlated systems: real space pairing and statistically consistent mean-field theory-in perspective. Acta Phys. Pol. A 121, 764–784 (2012)

    Google Scholar 

  16. Kaneyoshi, T.: Magnetizations of a nanoparticle described by the transverse Ising model. J. Magn. Magn. Mater. 321, 3430–3435 (2009)

    Article  ADS  Google Scholar 

  17. Kaneyoshi, T.: Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces. J. Magn. Magn. Mater. 321, 3630–3636 (2009)

    Article  ADS  Google Scholar 

  18. Kaneyoshi, T.: Ferrimagnetic magnetizations in a thin film described by the transverse Ising model. Phys. Status Solidi B 246, 2359–2365 (2009)

    Article  ADS  Google Scholar 

  19. Kaneyoshi, T.: Magnetizations of a transverse Ising nanowire. J. Magn. Magn. Mater. 322, 3410–3415 (2010)

    Article  ADS  Google Scholar 

  20. Kaneyoshi, T.: Phase diagrams of a transverse Ising nanowire. J. Magn. Magn. Mater. 322, 3014–3018 (2010)

    Article  ADS  Google Scholar 

  21. Kaneyoshi, T.: Magnetic properties of a cylindrical Ising nanowire (or nanotube). Phys. Status Solidi B 248, 250–258 (2011)

    Article  ADS  Google Scholar 

  22. Kaneyoshi, T.: Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube). J. Magn. Magn. Mater. 323, 2483–2486 (2011)

    Article  ADS  Google Scholar 

  23. Kaneyoshi, T.: Some characteristic properties of initial susceptibility in a Ising nanotube. J. Magn. Magn. Mater. 323, 1145–1151 (2011)

    Article  ADS  Google Scholar 

  24. Kaneyoshi, T.: Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube, effects of surface dilution. Solid State Commun. 151, 1528–1532 (2011)

    Article  ADS  Google Scholar 

  25. Kaneyoshi, T.: The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core-shell coupling. Solid State Commun. 152, 883–886 (2012)

    Article  ADS  Google Scholar 

  26. Kaneyoshi, T.: Ferrimagnetism in a decorated Ising nanowire. Phys. Lett. A 376, 2352–2356 (2012)

    Article  ADS  Google Scholar 

  27. Kaneyoshi, T.: The effects of surface dilution on magnetic properties in a transverse Ising nanowire. Phys. A 391, 3616–3628 (2012)

    Article  Google Scholar 

  28. Kaneyoshi, T.: Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces. Phys. B 407, 4358–4364 (2012)

    Article  ADS  Google Scholar 

  29. Kaneyoshi, T.: Ferrimagnetism in a ultra-thin decorated Ising film. J. Magn. Magn. Mater. 336, 8–13 (2013)

    Article  ADS  Google Scholar 

  30. Kaneyoshi, T.: Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: Effects of interlayer coupling at the surface. J. Magn. Magn. Mater. 339, 151–156 (2013)

    Article  ADS  Google Scholar 

  31. Kaneyoshi, T.: Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution atsurfaces. Phys. B 414, 72–77 (2013)

    Article  ADS  Google Scholar 

  32. Kaneyoshi, T.: Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; Effects of interlayer coupling at the surface. Phys. A 392, 2406–2414 (2013)

    Article  Google Scholar 

  33. Kaneyoshi, T.: Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces. Phys. B 436, 208–214 (2014)

    Article  ADS  Google Scholar 

  34. Jiang, W., Li, X.X., Liu, L.M., Chen, J.N., Zhang, F.: Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90–98 (2014)

    Article  ADS  Google Scholar 

  35. Ertaş, M., Kocakaplan, Y.: Dynamic behaviors of the hexagonal Ising nanowire. Phys. Lett. A 378, 845–850 (2014)

    Article  ADS  Google Scholar 

  36. Kantar, E., Kocakaplan, Y.: Hexagonal type Ising nanowire with core/shell structure: the phase diagrams and compensation behavior. Solid State Commun. 177, 1–6 (2014)

    Article  ADS  Google Scholar 

  37. Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)

    Article  ADS  Google Scholar 

  38. Magoussi, H., Zaim, A., Kerouad, M.: Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube. Chin. Phys. B 22, 116401 (2013)

    Article  ADS  Google Scholar 

  39. Kocakaplan, Y., Kantar, E., Keskin, M.: Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Eur. Phys. J. B 86, 40659 (2013)

    Article  MathSciNet  Google Scholar 

  40. Jiang, W., Li, X.X., Liu, L.M.: Surface effects on a multilayer and multisublattice cubic nanowire with core/shell. Phys. E 53, 29–35 (2013)

    Article  Google Scholar 

  41. Deviren, B., Şener, Y., Keskin, M.: Dynamic magnetic properties of the kinetic cylindrical Ising nanotube. Phys. A 392, 3969–3983 (2013)

    Article  MathSciNet  Google Scholar 

  42. Wang, C.D., Ma, R.G.: Force induced phase transition of honeycomb-structured ferroelectric thin film. Phys. A 392, 3570–3577 (2013)

    Article  MathSciNet  Google Scholar 

  43. Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F.: Phase diagrams of diluted transverse Ising nanowire. J. Magn. Magn. Mater. 336, 75–82 (2013)

    Article  ADS  Google Scholar 

  44. Kantar, E., Deviren, B., Keskin, M.: Magnetic properties of mixed Ising nanoparticles with core-shell structure. Eur. Phys. J. B 86, 40080 (2013)

    Article  Google Scholar 

  45. Zaim, A., Kerouad, M., Boughrara, M.: Effects of the random field on the magnetic behavior of nanowires with core/shell morphology. J. Magn. Magn. Mater. 331, 37–44 (2013)

    Article  ADS  Google Scholar 

  46. Şarlı, N.: Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube. Phys. B 411, 12–25 (2013)

    Article  ADS  Google Scholar 

  47. Şarlı, N., Keskin, M.: Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire. Solid State Commun. 152, 354–359 (2012)

    Article  ADS  Google Scholar 

  48. Keskin, M., Şarlı, N., Deviren, B.: Hysteresis behaviors in a cylindrical Ising nanowire. Solid State Commun. 151, 1025–1030 (2011)

    Article  ADS  Google Scholar 

  49. Yüksel, Y., Akıncı, Ü., Polat, H.: Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire. Phys. Status Solidi B 250, 196–206 (2013)

    Article  ADS  Google Scholar 

  50. Yüksel, Y., Vatansever, E., Polat, H.: Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field. J. Phys. 24, 436004 (2012)

    Google Scholar 

  51. Akıncı, Ü.: Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: continuous distributions. J. Magn. Magn. Mater. 324, 4237–4244 (2012)

    Article  ADS  Google Scholar 

  52. Akıncı, Ü.: Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: discrete distributions. J. Magn. Magn. Mater. 324, 3951–3960 (2012)

    Article  ADS  Google Scholar 

  53. Deviren, B., Kantar, E., Keskin, M.: Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field. J. Magn. Magn. Mater. 324, 2163–2170 (2012)

    Article  ADS  Google Scholar 

  54. Deviren, B., Ertaş, M., Keskin, M.: Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire. Phys. Scr. 85, 055001 (2012)

    Article  ADS  Google Scholar 

  55. De Los Santos, V.L., Bustamante, D.A., Gonzalez, J.C., Feijoo, L.J., Osorio, A.A., Mitrelias, T., Majima, Y., Barnes, C.H.W.: Magnetic properties of the superconductor LaCaBaCu3O7. Open Supercond. J. 2, 19–27 (2010)

    Article  Google Scholar 

  56. Oner, Y., Kamer, O., Alveroglu, E., Acet, M., Krenke, T.: Superconductivity in the Heusler alloy Pd2YbPb. J. Alloys Compd. 429, 64–71 (2007)

    Article  Google Scholar 

  57. Suharta, W.G., Mugirahardjo, H., Pratapa, S., Darminto, D., Suasmoro, S.: X-ray and high-resolution neutron diffraction studies on Nd x Y 1−xBa2Cu3O7−δ superconductors. J. Supercond. Nov. Magn. 26, 3209–3214 (2013)

    Article  Google Scholar 

  58. Altin, E., Gokhfeld, D.M., Kurt, F., Yakinci, Z.D.: Physical, electrical, transport and magnetic properties of Nd(Ba,Nd)2.1Cu3O7−δ system. J. Mater. Sci.: Mater. Electron. 24, 5075–5084 (2013)

    Google Scholar 

  59. Tarantini, C., Gurevich, A., Jaroszynski, J., Balakirev, F., Bellingeri, E., Pallecchi, I., Ferdeghini, C., Shen, B., Wen, H.H., Larbalestier, D.C.: Significant enhancement of upper critical fields by doping and strain in iron-based superconductors. Phys. Rev. B 84, 184522 (2011)

    Article  ADS  Google Scholar 

  60. Liyanawaduge, N.P., Singh, S.K., Kumar, A., Rajveer, J., Karunarathne, B.S.B., Awana, V.P.S.: Magnetization and magneto-resistance in Y(Ba1−xSrx)2Cu3O7−δ (x = 0.00-0.50) superconductors. Supercond. Sci. Technol. 25, 035017 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author declared that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Numan Şarlı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şarlı, N. Superconductor Core Effect of the Body Centered Orthorhombic Nanolattice Structure. J Supercond Nov Magn 28, 2355–2363 (2015). https://doi.org/10.1007/s10948-015-3061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3061-2

Keywords

Navigation