Skip to main content
Log in

Low-Temperature Magnetism of Metals in the Dynamic Spin-Fluctuation Theory

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The low-temperature behavior of magnetization in ferromagnetic metals is studied by means of the dynamic spin-fluctuation theory. An expression is derived for the dynamic magnetic susceptibility, which extends the one in the random phase approximation. The transverse susceptibility is shown to have the spin-wave poles, which yield the asymptotic T 3/2 law for magnetization. An explicit expression for the coefficient in the T 3/2 law is derived on the basis of the multiband Hubbard Hamiltonian and real band structure. The temperature dependence of magnetization is demonstrated by the example of Fe and disordered Fe-Ni Invar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bloch, F.: Z. Physik 61, 206 (1930); 74, 295 (1932)

  2. Moriya, T., Kawabata, A.: J. Phys. Soc. Japan 35, 669 (1973)

    Article  ADS  Google Scholar 

  3. Izuyama, T., Kim, D.J., Kubo, R.: J. Phys. Soc. Japan 18, 1025 (1963)

    Article  ADS  MATH  Google Scholar 

  4. Cooke, J.F., Lynn, J.W., Davis, H.L.: Phys. Rev. B 21, 4118 (1980)

    Article  ADS  Google Scholar 

  5. Callaway, J., Chatterjee, A.K., Singhal, S.P., Ziegler, A.: Phys. Rev. B 28, 3818 (1983)

    Article  ADS  Google Scholar 

  6. Hubbard, J.: Phys. Rev. B 19, 2626 (1979); 20, 4584 (1979)

  7. Hasegawa, H.: J. Phys. Soc. Japan 46, 1504 (1979); 49, 178 (1980); 49, 963 (1980)

  8. Melnikov, N.B., Reser, B.I., Grebennikov, V.I.: J. Phys. Condens. Matter 23, 276003 (2011)

    Article  ADS  Google Scholar 

  9. Lichtenstein, A.I., Katsnelson, M.I., Kotliar, G.: Phys. Rev. Lett. 87, 067205 (2001)

    Article  ADS  Google Scholar 

  10. Antropov, V.P.: J. Magn. Magn. Mater 262, L192 (2003)

    Article  ADS  Google Scholar 

  11. Ma, P.-W., Dudarev, S.L.: Phys. Rev. B 86, 054416 (2012)

    Article  ADS  Google Scholar 

  12. Reser, B.I., Melnikov, N.B.: J. Phys. Condens. Matter 20, 285205 (2008)

    Article  Google Scholar 

  13. Crisan, V., Entel, P., Ebert, H., Akai, H., Johnson, D.D., Staunton, J.B.: Phys. Rev. B 66, 014416 (2002)

    Article  ADS  Google Scholar 

  14. Ruban, A.V., Khmelevskyi, S., Mohn, P., Johansson, B.: Phys. Rev. B 76, 014420 (2007)

    Article  ADS  Google Scholar 

  15. Kim, D.J.: New perspectives in magnetism of metals. Kluwer, New York (1999)

    Book  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Statistical physics, Course on theoretical physics, Vol. 5, Pergamon, Oxford (1985)

  17. Donohue, J.: The structure of the elements. Wiley, New York (1974)

    Google Scholar 

  18. Crangle, J., Goodman, G.M.: Proc. R. Soc. A 321, 477 (1971)

    Article  ADS  Google Scholar 

  19. Aldred, A.T., Froehle, P.H.: Int. J. Magn. 2, 195 (1972)

    Google Scholar 

  20. Reser, B.I.: J. Phys. Condens. Matter 11, 4871 (1999)

    Article  ADS  Google Scholar 

  21. Moruzzi, V.L., Janak, J.F., Williams, A.R.: Calculated electronic properties of metals, Pergamon, New York (1978)

  22. Riedi, P.C.: Phys. Rev. B 8, 5243 (1973)

    Article  ADS  Google Scholar 

  23. Pauthenet, R.: J. Appl. Phys. 53, 8187 (1982)

    Article  ADS  Google Scholar 

  24. Köbler, U.: J. Phys. Condens. Matter 14, 8861 (2002)

    Article  ADS  Google Scholar 

  25. Lynn, J.W., Rosov, N., Acet, M., Bach, H.: J. Appl. Phys. 75, 6069 (1994)

    Article  ADS  Google Scholar 

  26. Shiga, M.: In: Materials science and technology, vol. 3B, part II, Cahn, R.W., Haasen, P., Kramer, E.J. (eds.), VHC, Weinheim (1994), p. 159

  27. Wassermann, E.F., Acet, M. In: Magnetism and structure in functional materials, Planes, A., Manosa, L., Saxena, A. (eds.), Springer, Berlin (2005), p. 177

  28. Okorokov, A.I., Grigor’ev, S.V., Runov, V.V., Gordeev, G.P., Chetverikov, Yu.O., Kopitsa, G.P.: J. Surf. Invest. 1, 542 (2007)

    Google Scholar 

  29. Crangle, J., Hallam, G.C.: Proc. Roy. Soc. Lond. A 272, 119 (1963)

    Article  ADS  Google Scholar 

  30. Ishikawa, Y., Onodera, S., Tajima, K.: J. Mag. Magn. Mater 10, 183 (1979)

    Article  ADS  Google Scholar 

  31. Johnson, D.D., Pinski, F.J., Stocks, G.M.: J. Appl. Phys. 57, 3018 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for useful comments. This work was carried out as a part of the Program of the Presidium of the Russian Academy of Sciences (project no. 12- π-2-1041) and supported by the Russian Foundation for Basic Research (grant no. 11-01-00795) and by the Russian Ministry of Education and Science (program no. 1.1016.2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Melnikov.

Appendix

Appendix

1.1 Transverse Spin Correlator

In the momentum-“frequency” representation, the energy of the field is written as

$$ F_{0}(V) \,=\, \frac{1}{\tilde{u}}\! {\sum}_{\mathbf{q}m}\!\! \left( \frac{1}{2} V^{-}_{\mathbf{q}m} V^{+}_{-\mathbf{q}-m} \!\,+\, \frac {1}{2} V^{+}_{\mathbf{q}m} V^{-}_{-\mathbf{q}-m} \!\,+\,\! V^{z}_{\mathbf{q}m} V^{z}_{-\mathbf{q}-m}\right). $$
(21)

Here, \(V^{\alpha }_{\mathbf {q}m}\), α=−,+,z, are the coefficients in the expansion of the matrix V q m in terms of the spin matrices \(\sigma ^{\pm } = \frac {1}{2} (\sigma ^{x} \pm \mathrm {i} \sigma ^{y})\) and σ z:

$$\begin{array}{@{}rcl@{}} V_{\mathbf{q}m} = V^{-}_{\mathbf{q}m} \sigma^{+} + V^{+}_{\mathbf{q}m} \sigma^{-} + V^{z}_{\mathbf{q}m}\sigma^{z}, \end{array} $$

and the Fourier transformations of the field are given by the formulae

$$\begin{array}{@{}rcl@{}}V^{\alpha}_{\mathbf{q}}(\tau) &=& \frac{1}{N_{\mathrm{a}}} {\sum}_{j} V^{\alpha}_{j} (\tau)\, \mathrm{e}^{-\mathrm{i} \mathbf{q} \mathbf{R}_{j}},\\ V^{\alpha}_{\mathbf{q}m} &=& T {\int}_{0}^{1/T} V^{\alpha}_{\mathbf{q}}(\tau)\, \mathrm{e}^{\mathrm{i} \omega_{m} \tau}\, \mathrm{d} \tau. \end{array} $$

The free energy F 1(V) can be written as

$$ F_{1}(V) = - T \ln {\text{Tr}} \exp(-H(V)/T), $$
(22)

where the Hamiltonian has the form

$$H(V) \,=\, H_{0} + 2 {\sum}_{\mathbf{q}m} \left(V^{-}_{\mathbf{q}m} s^{+}_{-\mathbf{q}-m} \,+\, V^{+}_{\mathbf{q}m} s^{-}_{-\mathbf{q}-m} \,+\, V^{z}_{\mathbf{q}m} s^{z}_{-\mathbf{q}-m}\right). $$

The Fourier transformations of the spin operator are given by

$$s^{\alpha}_{\mathbf{q}} = {\sum}_{j} s^{\alpha}_{j}\, \mathrm{e}^{-\mathrm{i} \mathbf{q} \mathbf{R}_{j}}, \qquad s^{\alpha}_{\mathbf{q}m} = T {\int}_{0}^{1/T} s^{\alpha}_{\mathbf{q}}(\tau)\, \mathrm{e}^{\mathrm{i} \omega_{m} \tau}\, \mathrm{d} \tau. $$

Now, we consider the second derivative of the free energy averaged over the fluctuating field:

$$\begin{array}{@{}rcl@{}} &&\left\langle \frac{\partial^{2} F_{1}(V)}{\partial V^{-}_{\mathbf{q}m} \partial V^{+}_{-\mathbf{q}-m}} \right\rangle\\ &&\quad= Q^{-1} \int \frac{\partial^{2} F_{1}(V)}{\partial V^{-}_{\mathbf{q}m} \partial V^{+}_{-\mathbf{q}-m}}\, \mathrm{e}^{-(F_{0}(V)+F_{1}(V) )/T} \mathrm{D} V, \end{array} $$

where Q −1 is the normalizing factor. Integrating by parts, we come to the equality

$$\begin{array}{@{}rcl@{}} &&\left\langle \frac{\partial^{2} F_{0}(V)}{\partial V^{-}_{\mathbf{q}m} \partial V^{+}_{-\mathbf{q}-m}}\right\rangle - \frac {1}{T} \left\langle \frac{\partial F_{0}(V)}{\partial V^{-}_{\mathbf{q}m}} \frac{\partial F_{0}(V)}{\partial V^{+}_{-\mathbf{q}-m}}\right\rangle \\ &&\quad= \left\langle \frac{\partial^{2} F_{1}(V)}{\partial V^{-}_{\mathbf{q}m} \partial V^{+}_{-\mathbf{q}-m}}\right\rangle - \frac{1}{T}\left\langle \frac{\partial F_{1}(V)}{\partial V^{-}_{\mathbf{q}m}} \frac{\partial F_{1}(V)}{\partial V^{+}_{-\mathbf{q}-m}}\right\rangle, \end{array} $$
(23)

which is independent of a particular form of the functions F 0(V) and F 1(V). Substituting the explicit expressions (21) and (22) to (23), we obtain

$$\left\langle s^{-}_{\mathbf{q}m} s^{+}_{-\mathbf{q}-m}\right\rangle = \frac{1}{4} \left(\frac{1}{\tilde{u}^{2}} \left\langle V^{-}_{\mathbf{q}m} V^{+}_{-\mathbf{q}-m} \right\rangle - \frac{T}{\tilde{u}}\right). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, N.B., Reser, B.I. Low-Temperature Magnetism of Metals in the Dynamic Spin-Fluctuation Theory. J Supercond Nov Magn 28, 797–803 (2015). https://doi.org/10.1007/s10948-014-2682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2682-1

Keywords

Navigation