Skip to main content
Log in

Effect of Fast Axial Flow CO2 Laser Processing Parameters on Graphene/AlxCoCrNiTi High Entropy Alloy

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The energy distribution characteristics of fast axial flow CO2 lasers demonstrate that they are often used for cutting and welding metal materials, and it is generally believed that they are not suitable for material heat treatment. In order to expand the application range of these lasers, we prepare graphene (Gr) reinforced high entropy alloy (HEA) coatings, employing this type of laser under loworder mode conditions by adjusting processing parameters and cladding powder composition through orthogonal experiments. Then we study the effect of laser processing parameters on Gr/AlxCoCrNiTi composite coatings. The research results indicate that the optimum process parameters are as follows: the laser power P = 3200 W, the scanning speed V = 14 mm/s, the cladding powder thickness d = 1.2 mm, and the spot diameter D = 4.0 mm. We find that, under the optimum process parameters, the Gr/AlxCoCrNiTi laser cladding coatings exhibit typical dendrites and equiaxed grains. The microstructure refines with increase in the Al content. The Gr/AlxCoCrNiTi laser cladding coating mainly consists of the face centered cubic (FCC), body centered cubic (BCC), and M23C6. Increase in the Al content promotes the formation of the BCC structure. The microhardness of Gr/AlxCoCrNiTi composite coatings range from 550 to 725 HV. The hardness is related to the solid solution strengthening caused by Gr and Al. With increase in the Al content, the microhardness of the coating shows a trend to increase, the wear resistance first increases and then decreases. The wear resistance is related to the BCC content and cracks in the coating. Orthogonal experiments and coating performance indicate that, by adjusting laser processing parameters and alloy composition, it is possible for fast axial flow CO2 lasers to prepare Gr/AlxCoCrNiTi composite coatings under low-order mode conditions, which can expand the applicability of these lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chen, Y.-J. Guan, G. Jin, et al., Surf. Coat. Tech., 461, 129447 (2023).

    Article  Google Scholar 

  2. C.-G. Liu, X.-W. Qiu, J. Peng, et al., Opt. Laser. Eng., 163, 107458 (2023).

    Article  Google Scholar 

  3. Q. Zhang, Q. Wang, B. Han, et al., J. Alloy. Compd., 947, 169517 (2023).

    Article  Google Scholar 

  4. F.-K. Shi, Q.-K. Zhang, C. Xu, et al., Opt. Laser. Technol., 151, 108020 (2022).

    Article  Google Scholar 

  5. Q. Zhu, Y. Liu, and C.-Y. Zhang, Mater. Lett., 318, 132133 (2022).

    Article  Google Scholar 

  6. Z.-F. Sun, J.-H. Kang, Z. Zhang, et al., Opt. Commun., 527, 128946 (2023).

    Article  Google Scholar 

  7. J.-H. Kang, B. Wu, Z. Zhang, et al., Opt. Laser. Eng., 142, 106591 (2021).

    Article  Google Scholar 

  8. W.-C. Lai, P.-F. Ma, W. Liu, et al., Opt. Laser. Eng., 149, 106826 (2022).

    Article  Google Scholar 

  9. C. O. Saeed, A. A. Qader, S. B. Aziz, et al., Opt. Mater., 132, 112815 (2022).

    Article  Google Scholar 

  10. H. Christian, S. Peter, W. Rudolf, et al., Opt. Laser. Eng., 100, 131 (2018).

    Article  Google Scholar 

  11. X.-M. Qin, Y. Xu, Y.-F. Sun, et al., Mater. Sci. Eng. A, 782, 139277 (2020).

    Article  Google Scholar 

  12. O. N. Senkov and D. B. Miracle, J. Alloy. Compd., 658, 603 (2016).

    Article  Google Scholar 

  13. S. Park, H. Nam, J. Park, et al., Mater. Sci. Eng. A, 788, 139547 (2020).

    Article  Google Scholar 

  14. D.-C. Zhao, T. Yamaguchi, D. Tusbasa, et al., Mater. Des., 193, 108872 (2020).

    Article  Google Scholar 

  15. X. Yang and Y. Zhang, Mater. Chem. Phys., 132, 233 (2012).

    Article  Google Scholar 

  16. L. Yuan, J.-T. Xiong, Y. J. Du, et al., J. Mater. Sci. Technol., 61, 176 (2021).

    Article  Google Scholar 

  17. X.-W. Qiu, J. Alloy. Compd., 887, 161422 (2021).

    Article  Google Scholar 

  18. X.-W. Qiu, J. Mater. Res. Technol., 9, 5127 (2020).

    Article  Google Scholar 

  19. W. M. Choi, Y. H. Jo, S. S. Sohn, et al., NPJ Comput. Mater., 3, 39 (2019).

    Google Scholar 

  20. Y.-Z. Wang and Y.-J. Wang, Acta Mater., 224, 117527 (2022).

    Article  Google Scholar 

  21. Z.-J. Wang, C.-T. Liu, and P. Dou, Phy. Rev. Mat., 1, 043601 (2017).

    Google Scholar 

  22. B. Gludovatz, A. Hohenwarter, D. Catoor, et al., Science, 345, 1153 (2014).

    Article  ADS  Google Scholar 

  23. W. Li, D. Xie, D. Li, et al., Prog. Mater. Sci., 118, 100777 (2021).

    Article  Google Scholar 

  24. J.-C. Li, X.-C. Meng, L. Wan, et al., J. Manuf. Process, 68, 293 (2021).

    Article  Google Scholar 

  25. B. Cantor, I. Chang, P. Knight, et al., Mater. Sci. Eng. A, 375, 213 (2004).

    Article  Google Scholar 

  26. O. N. Senkov, G. Wilks, D. Miracle, et al., Intermetallics, 18, 1758 (2010).

    Article  Google Scholar 

  27. O. N. Senkov, G. Wilks, and J. Scott, Intermetallics, 19, 698 (2011).

    Article  Google Scholar 

  28. X. Nie, M. Cai, and S. Cai, Int. J. Refract Met. Hard Mater., 98, 105568 (2021).

    Article  Google Scholar 

  29. S. Huang, W. Li, O. Eriksson et al., Acta Mater., 199, 53 (2020).

    Article  ADS  Google Scholar 

  30. K.-D. Yu, W. Zhao, Z. Li, et al., Surf. Coat. Tech., 458, 129352 (2023).

    Article  Google Scholar 

  31. X.-F. Li, Y.-B. Feng, X. Wang, et al., J. Alloy. Compd., 926, 166778 (2022).

    Article  Google Scholar 

  32. T. Wang, C. Wang, J.-J. Li, et al., Mater. Charact., 193, 112314 (2022).

    Article  Google Scholar 

  33. X. Wen, X.-F. Cui, G. Jin, et al., Intermetallics, 156, 107851 (2023).

    Article  Google Scholar 

  34. K.-D. Yu, W. Zhao, Z. Li, et al., Ceram. Int., 49, 10151 (2023).

    Article  Google Scholar 

  35. Z.-Q. Cui, Z. Qin, P. Dong, et al., Mater. Lett., 259, 126769 (2020).

    Article  Google Scholar 

  36. C.-Y. Liu, X.-S. Jiang, H.-L. Sun, et al., Mater. Sci. Eng. A, 859, 144198 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwu Qiu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X. Effect of Fast Axial Flow CO2 Laser Processing Parameters on Graphene/AlxCoCrNiTi High Entropy Alloy. J Russ Laser Res 44, 470–479 (2023). https://doi.org/10.1007/s10946-023-10154-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10154-6

Keywords

Navigation