Skip to main content
Log in

The Third Closed-Loop Control for Compensating Light Power Fluctuations in the Interferometric Fiber-Optic Gyroscope

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In the interferometric fiber-optic gyroscope (IFOG), the stability of the light source is crucial. The fluctuations of light source power (LSP) do greatly compromise the performance of IFOG. When the driving current of the light source has fluctuations of about 0.5 to 2 mA, the bias stability of the gyroscope becomes 2 to 3 orders of magnitude worse. However, simplifying the light source is an important step in the process of miniaturizing and lowering the costs of IFOG, which compromises the stability of the light source and leads to fluctuations of the LSP. Therefore, it is important to compensate for fluctuations of the LSP. Earlier we have found that the differential signal of LSP was always crosstalked into the output signal of IFOG, under the prerequisite that the feedback phase could completely neutralize the light-intensity difference of the last period. We have given a solution to this case in our previous research work, but the prerequisite is not satisfied in many cases, and the crosstalk in the gyroscope is no longer the differential signal of LSP. In this paper, we propose a novel closed-loop control to solve this problem. The experimental results prove that this new method can effectively reduce the impact of LSP fluctuations by about 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Pavlath, Proc. SPIE, 11405, 1140506 (2020); https://doi.org/10.1117/12.2565023

  2. G. A. Sanders, S. J. Sanders, L. K. Strandjord, et al., Proc. SPIE, 9852, 985207 (2016); https://doi.org/10.1117/12.2228893

  3. K. Shang, M. Lei, Q. Xiang, et al., Chin. Opt. Lett., 18, 120601 (2020).

    Article  ADS  Google Scholar 

  4. K. Shang, M. Lei, Q. Xiang, et al., Opt. Commun., 485, 126729 (2021).

    Article  Google Scholar 

  5. Y. Qi, W. Feng, F. Li, et al., Opt. Laser Technol., 157, 108751 (2023).

    Article  Google Scholar 

  6. X. Suo, H. Yu, and X. Wu, IEEE Photonics Technol. Lett., 34, 1250 (2022).

    Article  ADS  Google Scholar 

  7. S. Gundavarapu, M. Belt, T. A. Huffman, et al., J. Lightw. Technol., 36, 1185 (2018).

    Article  ADS  Google Scholar 

  8. W. K. Bischel, M. A. Kouchnir, M. Bitter, et al., Proc. SPIE, 8164, 81640Q (2011); https://doi.org/10.1117/12.895249

  9. A. Rickman, Nat. Photonics, 8, 579 (2014).

    Article  ADS  Google Scholar 

  10. M. A. Tran, T. Komljenovic, J. C. Hulme, et al., Opt. Express, 25, 3826 (2017).

    Article  ADS  Google Scholar 

  11. L. Wang, D. R. Halstead, T. D. Monte, et al., “Low-cost, high-end tactical-grade fiber optic gyroscope based on photonic integrated circuit,” in: Proceedings of the 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Naples, FL, USA, 1-5 April 2019, pp. 1-2; https://doi.org/10.1109/ISISS.2019.8739700

  12. K. Shang, M. Lei, H. Li, et al., Chin. Opt. Lett., 20, 040601 (2022);

    Article  ADS  Google Scholar 

  13. F. Hui, M. L. Tianjin, L. Ma, et al., “Investigation on near gaussian-shaped spectrum Erbium-doped fiber source, which applied to the fiber optic gyroscope,” in: Proceedings of the 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), Saint Petersburg, Russia, 29-31 May 2017, pp. 1-4; https://doi.org/10.23919/ICINS.2017.7995669

  14. F. Hui, M.-C. Li, L. Ma, et al., J. Chin. Inertial Technol., 24, 372 (2016); https://doi.org/10.13695/j.cnki.12-1222/o3.2016.03.017

  15. X. Chen, J. Yang, Y. Zhou, and X. Shu, J. Phys. Conf. Ser., 916, 012027 (2017).

    Article  Google Scholar 

  16. O. Çelikel and S. E. San, Opt. Rev., 16, 35 (2009); https://doi.org/10.1007/s10043-009-0008-5

  17. C. Zhang, S. Zhang, X. Pan, and J. Jin, Opt. Express, 26, 10535 (2018).

    Article  ADS  Google Scholar 

  18. S. Zheng, M. Ren, X. Luo, et al., Sensors, 2023, 23 1925.

    Google Scholar 

  19. L. Xue, Y. Zhou, J. Li, et al., Opt. Fiber Technol., 71, 102926 (2022).

    Article  Google Scholar 

  20. Y. Cao, W. Xu, B. Lin, et al., Optik, 256, 168765 (2022).

    Article  ADS  Google Scholar 

  21. J. Li, Y. Zhou, L. Xue, et al., Opt. Fiber Technol., 71, 102927 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Feng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Ren, M., Luo, X. et al. The Third Closed-Loop Control for Compensating Light Power Fluctuations in the Interferometric Fiber-Optic Gyroscope. J Russ Laser Res 44, 247–255 (2023). https://doi.org/10.1007/s10946-023-10129-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10129-7

Keywords

Navigation