Skip to main content
Log in

Fabrication and Detection of Silicon Carbide Color Centers Based on Nanosecond Laser Technology

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

With the rapid development of NV* color centers in silicon carbide, as a new candidate for quantum technologies, have attracted increasing attention in the past ten years. To date, there are three methods of fabricating color centers in silicon carbide: ion injection, electronic irradiation, and femtosecond laser writing. Notably, these methods are too expensive for application. In this work, we use a laser writing method to produce color centers in 4H-SiC, employing a nanosecond laser. The 4H-SiC is placed on a steady optical platform, different powers (from 30 to 100 W) of the laser are used to illuminate the 4H-SiC, and a special array of color centers is produced on different pieces of the 4H-SiC with a size of 4×4 mm. Around the array, several optically-detected color centers appear. The fabricated color centers are optically characterized by confocal imaging with a 532 nm excitation at room temperature. The fluorescence spectra certainly show that the color centers are successfully produced. The Raman spectrum shows approximately 2,000 counts of the color center ensemble. The method clearly results in fabricated silicon vacancy color centers that can emit in both ranges of 850 – 950 nm and 650 – 750 nm. This technique can be used to engineer color centers in SiC for the single-photon generation, sensing, display fabrication, and light emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Castelletto and A. Boretti, J. Phys. Photon., 2, 022001-1 (2020).

    Article  Google Scholar 

  2. J. Ul Hassan, R. Karhu, L. Lilja. et al., Cryst. Growth Des., 19, 3288 (2019).

    Article  Google Scholar 

  3. L. Sánchez, E. Acurio, F. Crupi, et al., Microelectron. Reliab., 109, 113642-1 (2020).

    Article  Google Scholar 

  4. X. Wang, X. Gao, Z. Zhang, et al., J. Eur. Ceram. Soc., 41, 4671 (2021).

    Article  Google Scholar 

  5. M. Guziewski, A. D. Banadaki, Srikanth Patala, et al., Comput. Mater. Sci., 182, 109771-1 (2020).

    Article  Google Scholar 

  6. M. Atatüre, D. Englund, N. Vamivakas, et al., Nat. Rev. Mater., 3, 38 (2018).

    Article  Google Scholar 

  7. P. G. Brereton, D. Puent, J. Vanhoy, et al., Solid State Commun., 320, 114014-1 (2020).

    Article  Google Scholar 

  8. A. L. Falk, P. V. Klimov, V. Ivády, et al., Phys. Rev. Lett., 114, 247603-1 (2015).

    Article  Google Scholar 

  9. D. J. Christle, A. L. Falk, P. Andrich, et al., Nat. Mater., 14, 160 (2014).

    Article  Google Scholar 

  10. M. Widmann, S.-Y. Lee, T. Render, et al., Nat. Mater., 14, 164 (2014).

    Article  Google Scholar 

  11. W. F. Koehl, B. B. Buckley, J. F. Heremans, et al., Nature, 479, 84 (2011).

    Article  Google Scholar 

  12. R. Nagy, M. Widmann, M. Niethammer, et al., Phys. Rev. Appl., 9, 034022-1 (2018).

    Article  Google Scholar 

  13. H. Kraus, D. Simin, C. Kasper, et al., Nano Lett., 17, 2865 (2017).

    Article  Google Scholar 

  14. J. Wang, X. Zhang, Y. Zhou, et al., ACS Photon., 4, 1054 (2017).

    Article  Google Scholar 

  15. S. Castelletto, B. C. Johnson, A. Boretti, et al., IOP Conf. Ser.: Mater. Sci. Engin., 840, 012010-1 (2020).

    Article  Google Scholar 

  16. S. Castelletto, J. Maksimovic, T. Katkus, et al., Nanomaterials, 11, E72 (2020).

    Article  Google Scholar 

  17. N. T. Son, C. P. Anderson, A. Bourassa, et al., Appl. Phys. Lett., 116, 1 (2020).

    Article  Google Scholar 

  18. D. Beke, J. Valenta, G. Károlyházy, et al., J. Phys. Chem. Lett., 11, 1675 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang.

Additional information

*The NV center is a point defect, where one carbon atom in the diamond’s crystal lattice is replaced by an nitrogen atom (N), and an adjacent lattice site is left empty (vacancy, V).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Huang, K., Cheng, L. et al. Fabrication and Detection of Silicon Carbide Color Centers Based on Nanosecond Laser Technology. J Russ Laser Res 43, 708–714 (2022). https://doi.org/10.1007/s10946-022-10098-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10098-3

Keywords

Navigation