Skip to main content
Log in

Space-Incoherent Beam Combining of Rectangular Spot Using 18 Fiber-Transmitted Semiconductor-Laser Beams

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We report an 18×1 laser space-incoherent beam combiner with a rectangular spot used for laser heat treatment (LHT). A total of 18 semiconductor laser beams of about 972 nm output by the fiber were arranged in parallel according to the “staggered matrix.” Through beam collimation and incoherentspace beam combination, a combined laser beam characterized by rectangular spot is obtained. The structural parameters of the combiner are optimized and designed using the ray tracing method. The establishment and use of the total lateral laser intensity distribution model for the combined laser beam verify the reliability of the design work. Through simulation and laser targeting experiments, it is verified that the combined laser beam presents a single rectangular spot shape within a combined beam length of 200 mm. As a result, a maximum continuous wave (CW) beam combining power of the combined laser beam, with a focal spot size of 31×11 mm, a center wavelength of 972.34 nm, and a spectral line width of 2.27 nm, reaches 10.641 kW corresponding to a beam combining efficiency of 98.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Siddiqui and A. K. Dubey, Opt. Laser Technol., 134, 106619 (2021).

    Article  Google Scholar 

  2. D. A. Lesyk, S. Martinez, B. N. Mordyuk, et al., Opt. Laser Technol., 111, 424 (2019).

    Article  ADS  Google Scholar 

  3. J. L. Mullo, J. A. Ramos-Grez, and G. O. Barrionuevo, J. Mat. Eng. Perform., 12, 2617 (2021).

    Article  Google Scholar 

  4. N. Rigas and M. Merklein, Prod. Eng.-Res. Dev., 15, 479 (2021).

    Article  Google Scholar 

  5. D. H. Wu, E. Z. Zhong, and X. S. Liu, Appl. Opt., 58, 3892 (2019).

    Article  ADS  Google Scholar 

  6. O. S. Soboleva, V. V. Zolotarev, V. S. Golovin, et al., IEEE T. Electron. Dev., 67, 4977 (2020).

    Article  ADS  Google Scholar 

  7. V. S. Golovin, I. S. Shashkin, S. O. Slipchenko, et al., Quantum Electron., 50, 147 (2020).

    Article  ADS  Google Scholar 

  8. A. V. Smith and J. J. Smith, Opt. Express, 19, 10180 (2011).

    Article  ADS  Google Scholar 

  9. A. V. Smith and J. J. Smith, Opt. Express, 20, 24545 (2012).

    Article  ADS  Google Scholar 

  10. S. P. Liu, H. S. Wu, Y. C. Hi, et al., IEEE Photonic. Tech. L., 31, 751 (2019).

    Article  ADS  Google Scholar 

  11. B. Dou, H. Zhang, J. H. Zhu, et al., Acta Metall. Sin.-Engl., 33, 1145 (2020).

    Article  Google Scholar 

  12. C. Park, J. Kim, A. Sim, et al., Wear, 202961, 434 (2019).

    Google Scholar 

  13. M. Kuklinski, A. Bartkowska, and D. Przestacki, Int. J. Adv. Manuf. Tech., 98, 3005 (2018).

    Article  Google Scholar 

  14. Y. Bai, G. Z. Lei, H. W. Chen, et al., IEEE Access, 7, 154457 (2019).

    Article  Google Scholar 

  15. K. Ludewigt, T. Riesbeck, B. Schünemann, et al., in: High-Power Lasers 2012: Technology and Systems, Proc. SPIE, 8547, 854704 (2012).

  16. K. Ludewigt, Th. Riesbeck, A. Graf, and M. Jung, in: Technologies for Optical Countermeasures X and High-Power Lasers 2013: Technology and Systems, Proc. SPIE, 8898, 88980N (2013).

  17. K. Ludewigt, Th. Riesbeck, Th. Baumgärtel, et al., in: Technologies for Optical Countermeasures XI and High-Power Lasers 2014: Technology and Systems, Proc. SPIE, 9251, 92510N (2014).

  18. C. J. Lü and Y. P. Han, Acta Phys. Sin., 68, 094201 (2019).

    Article  Google Scholar 

  19. F. Xiang, L. Zhang, T. Chen, et al., Chin. Phys. Lett., 37, 064101 (2020).

    Article  ADS  Google Scholar 

  20. E. M. Drège, N. G. Skinner, and D. M. Byrne, Appl. Opt., 39, 4918 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Bai, Y., Li, B. et al. Space-Incoherent Beam Combining of Rectangular Spot Using 18 Fiber-Transmitted Semiconductor-Laser Beams. J Russ Laser Res 43, 378–388 (2022). https://doi.org/10.1007/s10946-022-10062-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10062-1

Keywords

Navigation