Skip to main content
Log in

Characterization of Milled High-Pressure High-Temperature NV-Center Nanodiamonds for Single-Photon Source Applications

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The color centers in nanodiamonds are promising candidates for the fabrication of stable room-temperature sources of single photons. We investigate the luminescent and morphological properties of milled high-pressure high-temperature nitrogen-vacancy (NV) center nanodiamonds with sizes of 10 – 160 nm on a glass substrate. We carry out the studies of photoluminescence and Raman spectra of a nanodiamond powder under excitation at wavelength 0 = 532 nm and demonstrate the presence of luminescence of NV and NV0 centers, as well as fundamental diamond Raman peak (1332 cm1). Laser scanning confocal fluorescence microscope images of NV centers under 532 nm CW excitation show the single-emitter behavior of these centers. The second-order correlation functions g(2)(t) for one or several (2–4) emitting NV centers are measured. We receive minimum g(2)(0) = 0.15 with background correction and estimate the photoluminescence lifetimes of NV centers from 10 to 25 ns. For a single NV center, we obtain the saturation count rate of 250 kcounts/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Shenderova, A. I. Shames, N. A. Nunn, et al., J. Vac. Sci. Technol. B, 37, 030802 (2019).

  2. V. A. Davydov, A. V. Rakhmanina, S. G. Lyapin, et al., JETP Lett., 99, 585 (2014).

    Article  ADS  Google Scholar 

  3. I. Aharonovich, A. D. Greentree, and S. Prawer, Nat. Photonics, 5, 397 (2011).

    Article  ADS  Google Scholar 

  4. I. Aharonovich, S. Castelletto, D. A. Simpson, et al., Rep. Prog. Phys., 74, 076501 (2011).

  5. S. Prawer and I. Aharonovich (Eds.), Quantum Information Processing with Diamond: Principles and Applications, Elsevier (2014).

  6. J. Wrachtrup and F. Jelezko, J. Phys.-Condens. Matter, 18, S807 (2006).

    Article  ADS  Google Scholar 

  7. G. Vicidomini, G. Moneron, K. Y. Han, et al., Nat. Methods, 8, 571 (2011).

    Article  Google Scholar 

  8. D. A. Simpson, E. Morrisroe, J. M. McCoey, et al., ACS Nano, 11, 12077 (2017).

    Article  Google Scholar 

  9. J. M. Taylor, P. Cappellaro, L. Childress, et al., Nat. Phys., 4, 810 (2008).

    Article  Google Scholar 

  10. G. Kucsko, P. C. Maurer, N. Y. Yao, et al., Nature, 500, 54 (2013).

    Article  ADS  Google Scholar 

  11. Yu. Borzdov, Yu. Pal’yanov, I. Kupriyanov, et al., Diam. Relat. Mater., 11, 1863 (2002).

    Article  ADS  Google Scholar 

  12. O. Shenderova, N. Nunn, T. Oeckinghaus, et al., Advances in Photonics of Quantum Computing, Memory, and Communication X. International Society for Optics and Photonics, 10118, 1011803 (2017).

    Google Scholar 

  13. J. P. Boudou, P. A. Curmi, F. Jelezko, et al., Nanotechnology, 20, 235602 (2009).

  14. C. Kurtsiefer, S. Mayer, P. Zarda, and H.Weinfurter, Phys. Rev. Lett., 85, 290 (2000).

    Article  ADS  Google Scholar 

  15. A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, Academic Press (2013).

  16. S. G. Lukishova and L. J. Bissell, “Nanophotonic advances for room-temperature single-photon sources”, in: Quantum Photonics: Pioneering Advances and Emerging Applications, Springer (2019).

  17. M. Sangouard and H. Zbinden, J. Mod. Opt., 59, 1458 (2012).

    Article  ADS  Google Scholar 

  18. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett., 39, 691 (1977).

    Article  ADS  Google Scholar 

  19. S. V. Bolshedvorskii, V. V. Vorobyov, V. V. Soshenko, et al., Opt. Mater. Express, 7, 4038 (2017).

    Article  ADS  Google Scholar 

  20. A. Beveratos, S. Kühn, R. Brouri, et al., Eur. Phys. J. D, 18, 191 (2002).

  21. G. Davies, and M. F. Hamer, Proc. R. Soc. London A: Math. Phys. Sci., 348, 285 (1976).

    Google Scholar 

  22. A. T. Collins, M. F. Thomaz, and M. I. B. Jorge. J. Phys. C, 16, 2177 (1983).

    Article  ADS  Google Scholar 

  23. A. Lenef and S. Rand, Phys. Rev. B, 53, 13441 (1996).

    Article  ADS  Google Scholar 

  24. S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, et al., Nano Lett., 18, 4837 (2018).

    Article  ADS  Google Scholar 

  25. N. S. Kurochkin, S. P. Eliseev, A. V. Gritsienko, et al., Nanotechnology, 31, 505206 (2020).

  26. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, et al., Nat. Photonics, 8, 835 (2014).

    Article  ADS  Google Scholar 

  27. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, et al., Nat. Commun., 6, 7788 (2015).

    Article  ADS  Google Scholar 

  28. A. V. Gritsienko, N. S. Kurochkin, A. G. Vitukhnovsky, et al., J. Phys. D: Appl. Phys., 52, 325107 (2019).

  29. S. Kumar, C. Wu, D. Komisar, et al., J. Chem. Phys., 154, 044303 (2021).

  30. S. P. Eliseev, N. S. Kurochkin, S. S. Vergeles, et al., JETP Lett., 105, 577 (2017).

    Article  ADS  Google Scholar 

  31. N. S. Kurochkin, S. P. Eliseev, and A. G. Vitukhnovsky, Optik, 185, 716 (2019).

    Article  ADS  Google Scholar 

  32. S. I. Bogdanov, A. Boltasseva, and V. M. Shalaev, Science, 364, 532 (2019).

    Article  ADS  Google Scholar 

  33. E. Rittweger, K. Y. Han, S. E. Irvine, et al., Nat. Photonics, 3, 144 (2009).

    Article  ADS  Google Scholar 

  34. T. J. Wolf, J. Fischer, M. Wegener, and A. N. Unterreiner, Opt. Lett., 36, 3188 (2011).

    Article  ADS  Google Scholar 

  35. S. Stehlik, M. Varga, M. Ledinsky, et al., J. Phys. Chem. C, 119, 27708 (2015).

    Article  Google Scholar 

  36. A. Chamayou and J. A. Dodds, “Air jet milling,” in: Handbook of Powder Technology, Elsevier (2007).

  37. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods, 9, 671 (2012).

    Article  Google Scholar 

  38. V. S. Gorelik, S. A. Savinov, V. V. Sychev, and D. Bi, Crystallogr. Rep., 65, 953 (2020).

    Article  ADS  Google Scholar 

  39. F. Jelezko, C. Tietz, A. Gruber, et al., Single Molecules, 2, 255 (2001).

    Article  ADS  Google Scholar 

  40. R. Brouri, A. Beveratos, J. P. Poizat, et al., Opt. Lett., 25, 1294 (2000).

    Article  ADS  Google Scholar 

  41. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, J. Phys. B: At. Mol. Opt., 39, 37 (2005).

    Article  ADS  Google Scholar 

  42. V. V. Vorobyov, A. Y. Kazakov, V. V. Soshenko, et al., Opt. Mater. Express, 7, 513 (2017).

    Article  ADS  Google Scholar 

  43. N. Liaros and J. T. Fourkas. Opt. Mater. Express, 9, 3006 (2019).

    Article  ADS  Google Scholar 

  44. S. P. Eliseev, A. E. Korolkov, A. G. Vitukhnovsky, et al., Nanotechnol. Russ., 11, 200 (2016).

    Article  Google Scholar 

  45. L. Sharma and L. N. Tripathi, Opt. Commun., 496, 127139 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxue Bi.

Additional information

Dedicated to the memory of Prof. Vladimir S. Gorelik with our respect and gratitude for his guidance and help in our previous work and study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurochkin, N.S., Savinov, S.A., Bi, D. et al. Characterization of Milled High-Pressure High-Temperature NV-Center Nanodiamonds for Single-Photon Source Applications. J Russ Laser Res 42, 713–720 (2021). https://doi.org/10.1007/s10946-021-10013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-10013-2

Keywords

Navigation