Skip to main content
Log in

Raman Scattering Enhancement Based on High-Pressure High-Temperature Diamonds

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We discuss the use of high-pressure high-temperature (HPHT) diamonds for the determination of trace amounts of various Raman active substances. The amount of the substances on the diamond surface required to measure the Raman spectra is one-to-three orders of magnitude smaller than the amount necessary to measure the spectra of the initial substance under the same experimental conditions. We investigate the dependence of the intensity of the Raman line of the substance on the size of the diamond particle and check if the Raman scattering intensity enhancement in diamond composites can be attributed to the whispering gallery mode resonance and the local field enhancement near the sharp diamond tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. V. Raman, Nature, 121, 619 (1928).

    Article  ADS  Google Scholar 

  2. S. Nakashima and H. Harima, Physica Status Solidi A, 162, 39 (1997).

    Article  ADS  Google Scholar 

  3. N. Huang, M. Short, J. Zhao, et al., Opt. Express, 19, 22892 (2011).

    Article  ADS  Google Scholar 

  4. S. D. Christesen, Appl. Spectrosc., 42, 318 (1988).

    Article  ADS  Google Scholar 

  5. K. Kneipp, M. Moskovits, and H. Kneipp, Phys. Today, 60, 40 (2007).

    Article  Google Scholar 

  6. K. Kneipp, Y. Wang, H. Kneipp, et al., Phys. Rev. Lett., 78, 1667 (1997).

    Article  ADS  Google Scholar 

  7. A. Jorio, M. A. Pimenta, A. G. Souza Filho, et al., New J. Phys., 5, 139 (2003).

    Article  ADS  Google Scholar 

  8. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett., 82, 4142 (1999).

    Article  ADS  Google Scholar 

  9. R. M. Stockle, Y. D. Suh, V. Deckert, et al., Chem. Phys. Lett., 318, 131 (2000).

    Article  ADS  Google Scholar 

  10. J. F. Li, Y. F. Huang, Y. Ding, et al., Nature, 464, 392 (2010).

    Article  ADS  Google Scholar 

  11. A. M. Zaitsev, Optical Properties of Diamond: a Data Handbook, Springer, Berlin, Heidelberg (2013); https://doi.org/10.1007/978-3-662-04548-0

  12. Y. V. Pleskov, Russ. J. Electrochem., 38, 1275 (2002).

    Article  Google Scholar 

  13. J. E. Graebner, S. Jin, G. W. Kammlott, et al., Appl. Phys. Lett., 60, 1576 (1992).

    Article  ADS  Google Scholar 

  14. D. Milewska, K. Karpienko, and M. Jedrzejewska-Szczerska, Diam. Relat. Mater., 64, 169 (2016).

    Article  ADS  Google Scholar 

  15. X. Gao, C. Xue, Y. Chao, et al., Appl. Opt., 60, 162 (2021).

    Article  ADS  Google Scholar 

  16. J. D. Breeze, E. Salvadori, J. Sathian, et al., Nature, 555, 493 (2018).

    Article  ADS  Google Scholar 

  17. S. Solin and A. Ramdas, Phys. Rev. B., 1, 1687 (1970).

    Article  ADS  Google Scholar 

  18. R. S. Krishnan, Nature, 155, 171 (1945).

    Article  ADS  Google Scholar 

  19. S. Prawer, K. W. Nugent, D. N. Jamieson, et al., Chem. Phys. Lett., 332, 93 (2000).

    Article  ADS  Google Scholar 

  20. A. A. Kaminskii, R. J. Hemley, J. Lai, et al., Laser Phys. Lett., 4, 350 (2007).

    Article  ADS  Google Scholar 

  21. J. P. M. Feve, K. E. Shortoff, M. J. Bohn, et al., Opt. Express, 19, 913 (2011).

    Article  ADS  Google Scholar 

  22. R. P. Mildren and A. Sabella, Opt. Lett., 34, 2811 (2009).

    Article  ADS  Google Scholar 

  23. V. S. Gorelik, A. V. Skrabatun, and D. Bi, Opt. Spectrosc., 126, 533 (2019).

    Article  Google Scholar 

  24. A. N. Oraevsky, Quantum Electron., 32, 377 (2002).

    Article  ADS  Google Scholar 

  25. S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in: P. W. Barber and R. K. Chang (Eds.), Optical Effects Associated with Small Particles, World Scientific, Singapore, New Jersey, Hong Kong (1988).

    Google Scholar 

  26. L. K. Ausman and G. C. Schatz, J. Chem. Phys., 129, 054704 (2008).

    Article  ADS  Google Scholar 

  27. S. H. Huang, X. Jiang, B. Peng, et al., Photon. Res., 6, 346 (2018).

    Article  Google Scholar 

  28. N. Bontempi, L. Carletti, C. De Angelis, et al., Nanoscale, 8, 3226 (2016).

    Article  ADS  Google Scholar 

  29. D. Bi and V. S. Gorelik, Ferroelectrics, 559, 36 (2020).

    Article  Google Scholar 

  30. F. P. Bundy, H. T. Hall, H. M. Strong, et al., Nature, 176, 51 (1955).

    Article  ADS  Google Scholar 

  31. Y. Borzdov, Y. Pal’yanov, I. Kupriyanov, et al., Diam. Relat. Mater., 11, 1863 (2002).

    Article  ADS  Google Scholar 

  32. Y. Kawata, C. Xu, and W. Denk, J. Appl. Phys., 85, 1294 (1999).

    Article  ADS  Google Scholar 

  33. A. Wisitsora-At, W. P. Kang, J. L. Davidson, et al., Appl. Phys. Lett., 71, 3394 (1997).

    Article  ADS  Google Scholar 

  34. W. P. Kang, A. Wisitsora-At, J. L. Davidson, et al., J. Vac. Sci. Technol. B, 16, 684 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxue Bi.

Additional information

We would like to dedicate this article to the memory of Professor Vladimir S. Gorelik, our respected supervisor, colleague, and friend. We sincerely appreciate Vladimir Semenovich for his guidance, help, and support in our previous work and studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, D., Sverbil, P.P., Voinov, Y.P. et al. Raman Scattering Enhancement Based on High-Pressure High-Temperature Diamonds. J Russ Laser Res 42, 671–676 (2021). https://doi.org/10.1007/s10946-021-10008-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-10008-z

Keywords

Navigation