Skip to main content
Log in

Polarization Image Fusion Algorithm Using NSCT and CNN

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Fusion is beneficial to improve the accuracy of target detection in polarization images. In this paper, we propose an image fusion algorithm that combines nonsubsampled contourlet transform (NSCT) and Convolutional Neural Network (CNN). First, the fast guide filter and pulse-coupled neural network (PCNN) are employed to eliminate the noise of the polarization angle images. Second, the degree of linear polarization and polarization angle images are fused to obtain the polarization characteristic image. Finally, the polarization characteristic image is fused with the intensity image by NSCT. The CNN network is involved to extract mutilayer features from the high-frequency components of NSCT. The zero-phase component analysis (ZCA) is applied to normalize these features. The fusion coefficients of the high-frequency subband fusion coefficients are obtained by calculating the activity energy map of feature image. The low-frequency subband fusion coefficients are obtained by the strategy of regional energy. The result image is reconstructed by inverse NSCT. The experimental results show that the average gradient of the fused image is 51.3% higher than that of polarized intensity image, while the spatial frequency is improved by 35.1%. This algorithm is superior to others in terms of subjective visual effect and objective evaluation parameters, which is suitable for target detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, L. Ji, F. Yang, et al. Opto-Electron. Engin., 046, 190059 (2019); https://doi.org/10.12086/oee.2019.190059

    Article  Google Scholar 

  2. F. B. Yang, A. R. Dong, L. Zhang, et al., J. Meas. Sci. Instrum., 07, 176 (2016); https://doi.org/10.3969/j.issn.1674-8042.2016.02.014 [in Chinese].

    Article  Google Scholar 

  3. H. Cai, J. Yang, Z. Huang, and P. Zhu, Nanotechnol. Precis. Engin., 14, 262 (2016).

    Google Scholar 

  4. S.-W. Li, D.-F. Huang, H. Liu, and H.-M. Wang, Laser & Infrared, 48, 113 (2018) [in Chinese].

    Google Scholar 

  5. S. Ye, Y. Ma, Y. T. Zhang, et al., Laser J., 41, 25 (2020).

    Google Scholar 

  6. Y. D. Bai, Infrared, 34, 1 (2013); https://doi.org/10.3969/j.issn.1672-8785.2013.03.001

    Article  Google Scholar 

  7. Y. Chen, S. F. Wang, K. Y. Du, and R. Wang, Laser J., 41, 11 (2020).

    Article  Google Scholar 

  8. Z. J. Xiao, Infrared Laser Engin., 42, 141 (2013).

    Google Scholar 

  9. J. H. Song, J. Gan, and Y. J. Liu, Comput. Eng. Appl., 52, 186 (2016).

    Google Scholar 

  10. Z. Zhu, M. Zheng, G. Qi, et al., IEEE Access, 7, 20811 (2019); https://doi.org/10.1109/ACCESS.2019.2898111

    Article  Google Scholar 

  11. H. Li, X.-J. Wu, and T. S. Durrani, Infrared Phys. & Technol., 102, 103039 (2019).

    Article  Google Scholar 

  12. H. Li, X. J. Li, and J. Kittle, “Infrared and visible image fusion using a deep learning framework,” in: The 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018, pp. 2705–2710; https://doi.org/10.1109/ICPR.2018.8546006

  13. X. L. Zhang, X. F. Li, and J. Li, Acta Autom. Sin., 40, 306 (2014).

    Google Scholar 

  14. L. J. Wang, Y. X. Zhao, and L. N. Ji, Appl. Laser, 398, 842 (2018).

    Google Scholar 

  15. X. C. Shen, J. Liu, and M. Gao, Laser J., 41, 103 (2020).

    Google Scholar 

  16. F. J. Zhang, H. Cheng, and W. B. Sun, Image Technol., 22, 15 (2010) [in Chinese].

    Google Scholar 

  17. Q. G. Miao and B. S. Wang, Acta Opt. Sin., (09), 1605 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Meng, J., Zhou, Y. et al. Polarization Image Fusion Algorithm Using NSCT and CNN. J Russ Laser Res 42, 443–452 (2021). https://doi.org/10.1007/s10946-021-09981-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09981-2

Keywords

Navigation