Skip to main content
Log in

Raman Markers of Toxic Nanofraction in Anatase TiO2 Micropowder Used as E171 Food Additive

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Titanium dioxide (TiO2) micropowders widely used in modern food industry may contain particles in highly-toxic nanoform. Unlike micrometer-sized crystals, which cannot penetrate cell membranes, TiO2 nanofraction causes the liver function damage, intestinal inflammatory response, and oxidative metabolism imbalance. In this study, we demonstrate the possibility of utilizing Raman spectroscopy for fast detection of nanofractions against the background of anatase TiO2 micropowders. The results reveal that the presence of nanofractions leads to the appearance of several physically-grounded features in Raman spectra of TiO2 associated with the weakening of the selection rules for first-order scattering processes, the size-related frequency shift of Raman-active vibrations, and the enhanced contribution of Raman processes related to the surface states. In combination with standard microfiltration methods, these Raman markers provide a simple method for express control of highly-toxic nanofractions in TiO2 micropowders used in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Luo, Z. Li, Z. Xie, et al., Small, 16, 2002019 (2020); https://doi.org/10.1002/smll.202002019

    Article  Google Scholar 

  2. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), EFSA J., 14, 4545 (2016).

  3. R. J. B. Peters, H. Bouwmeester, S. Gottardo, et al., Trends Food Sci. Tech., 54, 155 (2016).

    Article  Google Scholar 

  4. G. J. Nohynek, J. Lademann, C. Ribaud, and M. S. Roberts, Crit. Rev. Toxicol., 37, 251 (2007).

    Article  Google Scholar 

  5. E.-J. Park, J. Yoon, K. Choi, et al., Toxicology, 260, 37 (2009).

    Article  Google Scholar 

  6. Q. Bu, G. Yan, P. Deng, et al., Nanotechnology, 21, 125105 (2010).

    Article  ADS  Google Scholar 

  7. S. Bettini, E. Boutet-Robinet, C. Cartier, et al., Sci. Rep., 7, 40373 (2017).

    Article  ADS  Google Scholar 

  8. L. Ma, J. Zhao, J. Wang, et al., Nanoscale Res. Lett., 4, 1275 (2009).

    Article  ADS  Google Scholar 

  9. K. Krüger, F. Cossais, H. Neve, and M. Klempt, J. Nanopart. Res., 16, 2402 (2014).

    Article  ADS  Google Scholar 

  10. B. A. Koeneman, Y. Zhang, P. Westerhoff, et al., Cell Biol. Toxicol., 26, 225 (2009).

    Article  Google Scholar 

  11. G. E. Onishchenko, M. V. Erokhina, S. S. Abramchuk, et al., Bull. Exp. Biol. Med., 154, 265 (2012).

    Article  Google Scholar 

  12. A. Kermanizadeh, B. K. Gaiser, G. R. Hutchison, and V. Stone, Part. Fibre Toxicol., 9, 28 (2012).

    Article  Google Scholar 

  13. S. A. Ferraro, M. G. Domingo, A. Etcheverrito, et al., J. Trace Elem. Med. Bio., 57, 126413 (2020).

    Article  Google Scholar 

  14. Y. Duan, N. Li, C. Liu, et al., Biol. Trace Elem. Res., 136, 302 (2009).

    Article  Google Scholar 

  15. C. Xue, J. Wu, F. Lan, et al., Nanosci. Nanotech., 10, 8500 (2010).

    Google Scholar 

  16. B. C. Schanen, A. S. Karakoti, S. Seal, et al., ACS Nano, 3, 2523 (2009).

    Article  Google Scholar 

  17. Y. Yang, K. Doudrick, X. Bi, et al., Environ. Sci. Technol., 48, 6391 (2014).

    Article  ADS  Google Scholar 

  18. W. Dudefoi, H. Terrisse, M. Richard-Plouet, et al., Food Addit. Contam., Part A, 34, 653 (2017)

    Google Scholar 

  19. M. Grujic-Brojcin, M. J. Šcepanovic, Z. D. Dohcevic-Mitrovi, et al., J. Phys. D: Appl. Phys., 38, 1415 (2005).

    Article  ADS  Google Scholar 

  20. R. Alcántara, J. Navas, C. Fernández-Lorenzo, et al., Phys. Status Solidi C, 8, 1970 (2011).

    Article  ADS  Google Scholar 

  21. J.-H. Lim, D. Bae, and A. Fong, J. Agricul. Food Chem., 66, 13533 (2018).

    Article  Google Scholar 

  22. B. Zhao, X. Cao, R. De La Torre-Roche, et al., RSC Adv., 7, 21380 (2017).

    Article  ADS  Google Scholar 

  23. B. Zhao, T. Yang, Z. Zhang, et al., Environ. Sci. Technol., 52, 2863 (2018).

    Article  ADS  Google Scholar 

  24. V. Moreno, M. Zougagh, and A. Ríos, Anal. Chim. Acta, 1050, 169 (2019).

    Article  Google Scholar 

  25. V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, et al., Phys. Rev. B, 71, 184302 (2005).

    Article  ADS  Google Scholar 

  26. K.-R. Zhu, M.-S. Zhang, Q. Chen, and Z. Yin, Phys. Lett. A, 340, 220 (2005).

    Article  ADS  Google Scholar 

  27. Z.-G. Mei, Y. Wang, S.-L. Shang, and Z.-K. Liu, Inorg. Chem., 50, 6996 (2011).

    Article  Google Scholar 

  28. S. El-Sherbiny, F. Morsy, M. Samir, and O. A. Fouad, Appl. Nanosci., 4, 305 (2013).

    Article  ADS  Google Scholar 

  29. M. El-Maazawi, A. N. Finken, A. B. Nair, and V. H. Grassian, J. Catal., 191, 138 (2000).

    Article  Google Scholar 

  30. D. K. Pallotti, L. Passoni, P. Maddalena, et al., J. Phys. Chem. C, 121, 9011 (2017).

    Article  Google Scholar 

  31. H. Shibata, Y. Ogura, Y. Sawa, and Y. Kono, Biosci. Biotechnol. Biochem., 62, 2306 (1998).

    Article  Google Scholar 

  32. S. K. Mukherjee and D. Mergel, J. Appl. Phys., 114, 013501 (2013).

    Article  ADS  Google Scholar 

  33. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc., 7, 321 (1978).

    Article  ADS  Google Scholar 

  34. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer, Berlin, Heidelberg (2010).

    Book  Google Scholar 

  35. P. Zielinski, Z. Lodziana, and T. Srokowski, Phys. B: Cond. Matt., 263–264, 719 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Krivobok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivobok, V.S., Kolobov, A.V., Dimitrieva, S.E. et al. Raman Markers of Toxic Nanofraction in Anatase TiO2 Micropowder Used as E171 Food Additive. J Russ Laser Res 42, 388–398 (2021). https://doi.org/10.1007/s10946-021-09974-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09974-1

Keywords

Navigation