Skip to main content
Log in

Research on Femtosecond-Laser Pulse-Width Measurement Based on LabVIEW

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this paper, we propose a measurement system based on single autocorrelation technology and combined with LabVIEW software platform to realize the real-time online measurement of the femtosecond-laser pulse width. The system uses an experimental device based on the Mach–Zehnder interferometer, where the second-harmonic signal of femtosecond laser is obtained by the nonlinear effect of light and nonlinear material; the linear grayscale conversion, median filtering, and threshold segmentation are also applied to the second-harmonic signal. The image centroid, autocorrelation curve, and femtosecond-laser pulse width are obtained, using LabVIEW software. In the experiment, a seed laser source with a central wavelength of 800 nm is used as a test object, and the pulse width is measured to be equal to 261 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wang, A. Chen, W. Xu, et al., Plasma Sci. Technol., 21, 144 (2019).

    Google Scholar 

  2. H.-Y. Song, H. Li, Y.-J. Zhang, et al., Chin. Phys. B, 26, 294 (2017).

    Google Scholar 

  3. S. S. Golik, A. A. Ilyin, M. Yu. Babiy, et al., Plasma Sci. Technol., 17, 975 (2015).

    Article  Google Scholar 

  4. A. Kanitz, D. J. Foerster, J. S. Hoppius, et al., Appl. Surface Sci., 475, 204 (2019).

    Article  ADS  Google Scholar 

  5. Y. Zheng, “Research on Ultrafast Terahertz Spectroscopy Based on Femtosecond Laser,” PhD Theses, University of Electronic Science and Technology of China (2020).

  6. C. Pan, L. Jiang, Q. Wang, et al., Appl. Phys. Lett., 112, 191101 (2018).

    Article  ADS  Google Scholar 

  7. P. N. Saltuganov, A. A. Ionin, S. I. Kudryashov, et al., J. Russ. Laser Res., 36, 81 (2015).

    Article  Google Scholar 

  8. Y. Re, R. Yoshizaki, N. Miyamoto, et al., Appl. Phys. Lett., 113, 061101.1 (2018).

  9. H. Yang, H. He, E. Zhao, et al., J. Russ. Laser Res., 34, 362 (2013).

    Article  Google Scholar 

  10. T. Aizawa, T. Inohara, and K. Wasa, Int. J. Automat. Technol., 14, 159 (2020).

    Article  Google Scholar 

  11. E. Favuzza, M. Becatti, A. M. Gori, et al., J. Cataract & Refractive Surgery, 45, 910 (2019).

    Article  Google Scholar 

  12. T. Kohnen, J. Cataract & Refractive Surgery, 40, 1947 (2014).

    Article  Google Scholar 

  13. L. Angelova, I. Bliznakova, A. Daskalova, et al., Opt. Quantum Electron., 52, (2020).

  14. Li Huang, Inf. Commun., 2012, 187 (2012) [in Chinese].

    Google Scholar 

  15. Yunjian Tang, “Application of Hardware-Based Kalman filter to Improve the Precision of Real-Time Femtosecond Laser Absolute Ranging,” PhD Theses, Tianjin University (2018).

  16. J. I. Dadap, G. B. Focht, D. H. Reitze, et al., Opt. Lett., 16, 499 (1991).

    Article  ADS  Google Scholar 

  17. K. N. Okishev, G. A. Anikeev, P. S. Goncharova, et al., Key Engin. Mat., 5932, 180 (2019).

    Article  Google Scholar 

  18. T. Sekikawa, T. Kanai, and S. Watanabe, Phys. Rev. Lett., 91, 103902 (2003).

    Article  ADS  Google Scholar 

  19. J. O. Koskinen, J. Vaarno, R. Vainionpää, et al., J. Immunological Meth., 309, 11 (2006).

  20. W. Zhaohua, W. Peng, and Z. Jie, Chin. J. Phys. B: English Ed., 52, 459 (2005).

    Google Scholar 

  21. C. Tan, X. Fu, Y. Deng, et al., J. Russ. Laser Res., 38, 294 (2017).

    Article  Google Scholar 

  22. C. G. Relf, Image Acquisition and Processing with LabVIEW, CRC Press (2003).

  23. F. Yu, B. Liu, Q. Zou, et al., Opt. Fiber Technol., 58, (2020).

  24. Y. Cao, H. Liu, Z. Tong, et al., Optoelectron. Lett., 11, 69 (2015).

    Article  ADS  Google Scholar 

  25. Z. Yanying, G. Yixing, Rongfeng Ll, et al., Laser Technol., 041, 342 (2017).

  26. C. Tan, S. Zhan, Y. Hu, et al., Inf. Commun., 04, 41 (2017).

    Google Scholar 

  27. Y. Zhang, Y. Li, X. Gu, et al., Optik, 185, 505 (2019).

    Article  ADS  Google Scholar 

  28. Q. Wang, J.-Z. Lin, S. Yang, et al., J. Naval Univ. Engin., 29, 77 (2017).

    Google Scholar 

  29. H. Z. Li, J. Lu, J. Wang, et al., Appl. Mech. Mat., 3785, 816 (2015).

    Article  Google Scholar 

  30. R. Chen and Y. A. Xu, Multimedia Tools Appl., 79, 9451 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, Y. & Yang, Y. Research on Femtosecond-Laser Pulse-Width Measurement Based on LabVIEW. J Russ Laser Res 42, 226–231 (2021). https://doi.org/10.1007/s10946-021-09954-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09954-5

Keywords

Navigation