Skip to main content
Log in

Quantum Fisher Information of Two Moving Four-Level Atoms

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate dynamics of quantum entanglement (QE) and quantum Fisher information (QFI) of a system of two four-level atoms moving in the thermal environment. The time evolution of the state vector of the whole quantum system interacting with the thermal field is investigated numerically in the presence of intrinsic decoherence (ID). We see that ID and the thermal environment play a prominent role in the time evolution of the quantum system. QFI and von Neumann entropy (VNE) show the opposite response during their time evolution in the presence of the thermal environment. QFI is seen as more prone to intrinsic decoherence when compared with the VNE in the presence of the thermal environment. VNE changes remarkably with increase in the intrinsic decoherence parameter without the atomic motion. However, the periodic response of VNE is seen because of the atomic motion which gets modest under environmental effects. The decay of VNE is further damped at larger time scales that confirm that ID affects the system dynamics in a thermal environment. Moreover, VNE and QFI saturate to a lower level for larger time-scales under these environments. The damping response of VNE is observed under intrinsic decoherence for larger time scales. The VNE and QFI saturate to a lower level for larger time scales under the environmental effects. Moreover, one sees that the thermal environment induces a quicker decay of VNE when compared with the decay induced by ID. In this manner, the ID and thermal environment are found to suppress the nonclassical effects of the quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Information, Cambridge University Press (2000).

  2. A.-S. F. Obada and S. Abdel-Khalek, J. Phys. A: Math. Gen., 37, 6573 (2004).

    Article  ADS  Google Scholar 

  3. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev Mod. Phys., 81, 865 (2009).

    Article  ADS  Google Scholar 

  4. J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett., 107, 083601 (2011).

    Article  ADS  Google Scholar 

  5. A.-S. F. Obada and S. Abdel-Khalek, Physica A, 389, 891 (2010).

    Article  ADS  Google Scholar 

  6. K. Berrada, F. F. Fanchini, and S. Abdel-Khalek, Phys. Rev. A, 85, 052315 (2012).

    Article  ADS  Google Scholar 

  7. S. Abdel-Khalek, Appl. Math. Inf. Sci., 1, 53 (2007).

    MathSciNet  Google Scholar 

  8. S. Abdel-Khalek, Quantum Inf. Process., 12, 3761 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  9. A.-S. F. Obada, S. Abdel-Khalek, and D. A. M. Abo-Kahla, Opt. Commun., 283, 4662 (2010).

    Article  ADS  Google Scholar 

  10. K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev. A, 65, 012101 (2001).

    Article  ADS  Google Scholar 

  11. G. J. Milburn, Phys. Rev. A, 44, 5401 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. J. Milburn, Phys. Rev. A, 47, 2415 (1993).

    Article  ADS  Google Scholar 

  13. C. S. Yu and H. S. Song, Phys. Rev. A, 71, 042331 ( 2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Moya-Cessa, W. Bbrumer, M. S. Kim, and P. L. Knight, Phys. Rev. A, 48, 3900 (1993).

    Article  ADS  Google Scholar 

  15. K. Berrada, S. Abdel-Khalek, and C. H. Raymond, Phys. Rev. A, 86, 033823 (2012).

    Article  ADS  Google Scholar 

  16. H. M. Wisemann and G. J. Milburn, Quantum, Measurement and Control, Cambridge University Press (2010).

    Google Scholar 

  17. S. Popescu and D. Rohrlich, Phys. Rev. A, 56R, 3319 (1997).

    Article  ADS  Google Scholar 

  18. K. Berrada, F. F. Fanchini, and S. Abdel-Khalek, Phys. Rev. A, 85, 052315 (2012).

    Article  ADS  Google Scholar 

  19. K. Berrada, S. Abdel-Khalek, and A.-S. F. Obada, Phys. Lett. A, 376, 1412 (2012).

    Article  ADS  Google Scholar 

  20. S. Abdel-Khalek, Int. J. Quantum Inf., 7, 1541 (2009).

    Article  Google Scholar 

  21. A.-S. F. Obada and S. Abdel-Khalek, Physica A, 389, 891 (2010).

    Article  ADS  Google Scholar 

  22. A.-S. F. Obada, S. Abdel-Khalek, and A. Plastino, Physica A, 390, 525 (2011).

    Article  ADS  Google Scholar 

  23. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).

  24. D. Petz, Linear Alegbra Appl., 244, 81 (1996).

    Article  Google Scholar 

  25. L. Pezzé and A. Smerzi, Phys. Rev. Lett., 102, 100401 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Ma and X. G. Wang, Phys. Rev. A, 80, 012318 (2009).

    Article  ADS  Google Scholar 

  27. Á. Rivas and A. Luis, Phys. Rev. Lett., 105, 010403 (2010).

    Article  ADS  Google Scholar 

  28. Z. Sun, J. Ma, X. M. Lu, and X. G. Wang, Phys. Rev. A, 82, 022306 (2010).

    Article  ADS  Google Scholar 

  29. J. Ma, Y. X. Huang, X. G. Wang, and C. P. Sun, Phys. Rev. A, 84, 022302 (2011).

    Article  ADS  Google Scholar 

  30. J. Ma, X. G. Wang, C. P. Sun, and F. Nori, Phys. Rep., 509, 89 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Hyllus, W. Laskowski, R. Krischek, et al., Phys. Rev. A, 85, 022321 (2012).

    Article  ADS  Google Scholar 

  32. G. Tóth, Phys. Rev. A, 85, 022322 (2012).

    Article  ADS  Google Scholar 

  33. J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett., 107, 083601 (2011).

    Article  ADS  Google Scholar 

  34. S. M. Roy and S. L. Braunstein, Phys. Rev. Lett., 100, 220501 (2008).

    Article  ADS  Google Scholar 

  35. B. M. Escher, R. L. de Matos Fillo, and L. Davidovich, Nature Physics, 7, 406 (2011).

    Article  ADS  Google Scholar 

  36. V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon., 5, 222 (2011).

    Article  ADS  Google Scholar 

  37. C. W. Helstrom, Quantum Detection and Estimation Theory, Academic, New York (1976).

    MATH  Google Scholar 

  38. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  39. W. K. Wootters, Phys. Rev. D, 23, 357 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  40. S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72, 3439 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  41. X. M. Lu, X. G. Wang, and C. P. Sun, Phys. Rev. A, 82, 042103 (2010).

    Article  ADS  Google Scholar 

  42. S. Abdel-Khalek and A.-S. F Obeda, Int. J. Quantum Inf., 9, 1091 (2011).

    Article  Google Scholar 

  43. H. H. Abu-Zinadah and S. Abdel-Khalek, Res. Phys., 7, 4318 (2017).

    Google Scholar 

  44. X. Liu, Physica A, 286, 588 (2000).

    Article  ADS  Google Scholar 

  45. M. Abdel-Aty, A. M. Sebawe, and A.-S. F. Obada, J. Phys. B, 35, 4773 (2002).

    Article  ADS  Google Scholar 

  46. S. Abdel-Khalek and A.-S. F. Obada, J. Russ. Laser Res., 30, 146 (2009).

    Article  Google Scholar 

  47. H. Eleuch, S. Guérin, and H. R. Jauslin, Phys. Rev. A, 85, 013830 (2012).

    Article  ADS  Google Scholar 

  48. S. Abdel-Khalek and T. A. Nofal, Physica A, 390, 2626 (2011).

    Article  ADS  Google Scholar 

  49. M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett., 87, 017901 (2001).

    Article  ADS  Google Scholar 

  50. M. B. Plenio and S. F. Huelga, Phys. Rev. Lett., 88, 197901 (2002).

    Article  ADS  Google Scholar 

  51. S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, Phys. Rev. Lett., 87, 050401 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  52. M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, Phys. Rev. A, 65, 040101 (2002).

    Article  ADS  Google Scholar 

  53. M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Phys. Rev. A, 59, 2468 (1999).

    Article  ADS  Google Scholar 

  54. X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, Phys. Rev. A, 68, 052304 (2003).

    Article  ADS  Google Scholar 

  55. L. Zhou, H. S. Song, and C. Li, J. Opt. B: Quantum Semiclass. Opt., 4, 425 (2002).

    Article  ADS  Google Scholar 

  56. H. R. Baghshahi and M. K. Tavassoly, Phys. Scr., 89, 075101 (2014).

    Article  ADS  Google Scholar 

  57. H. R. Baghshahi and M. K. Tavassoly, Eur. Phys. J. Plus, 130, 37 (2015).

    Article  Google Scholar 

  58. G. J. Milburn, Phys. Rev. A, 44, 5401 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  59. S. Abdel-Khalek, J. Russ. Laser Res., 32, 86 (2011).

    Google Scholar 

  60. W. Zhong, Z. Sun, J. Ma, et al., Phys. Rev. A, 87, 022337 (2013).

    Article  ADS  Google Scholar 

  61. K. Berrada, S. A. Khalek, and C. H. R. Ooi, Phys. Rev. A, 86, 033823 (2012).

    Article  ADS  Google Scholar 

  62. K. Berrada, Phys. Rev. A, 88, 013817 (2013).

    Article  ADS  Google Scholar 

  63. X. Lu, X. Wang, C. P. Sun, Phys. Rev. A, 82, 042103 (2010).

    Article  ADS  Google Scholar 

  64. O. E. Barndorff-Nielsen, R. D. Gill, and P. E. Jupp, J. R. Stat. Soc. B, 65, 775 (2003).

    Article  Google Scholar 

  65. S. Jamal, M. Ramzan, and K. Khan, Quantum Inf. Proc., 16, 142 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jamal Anwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, S.J., Usman, M., Ramzan, M. et al. Quantum Fisher Information of Two Moving Four-Level Atoms. J Russ Laser Res 41, 310–320 (2020). https://doi.org/10.1007/s10946-020-09880-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09880-y

Keywords

Navigation