Skip to main content
Log in

Interaction of Twisted Light with Electrons in Two-Dimensional Quantum Rings

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate the dynamics of charge carriers propagating in a ring being induced by twisted light: The exciting laser beam is assumed to have nonzero orbital angular momentum. The selection rules for the transitions between the eigenstates of the two-dimensional ring are determined with the aid of analytic and numerical methods. Using these results, we gain an insight into the physical process that leads to the transfer of the angular momentum of the laser beam to the electrons in the quantum ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Janszky and A. V. Vinogradov, Phys. Rev. Lett., 64, 2771 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Janszky, P. Domokos, and P. Adam, Phys. Rev. A, 48, 2213 (1993).

    Article  ADS  Google Scholar 

  3. J. Janszky, P. Domokos, S. Szabó, and P. Adam, Phys. Rev. A, 51, 4191 (1995).

    Article  ADS  Google Scholar 

  4. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A, 45, 8185 (1992).

    Article  ADS  Google Scholar 

  5. S. Stenholm, D. A. Holm, and M. Sargent III, Phys. Rev. A, 31, 3124 (1985).

    Article  ADS  Google Scholar 

  6. S. Stenholm, Rev. Mod. Phys., 58, 699 (1986).

    Article  ADS  Google Scholar 

  7. G. Gibson, J. Courtial, M. J. Padgett, et al., Opt. Express, 12, 5448 (2004).

    Article  ADS  Google Scholar 

  8. G. Molina-Terriza, J. P. Torres, and L. Torner, Nature Phys., 3, 305 (2007).

    Article  ADS  Google Scholar 

  9. S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photon. Rev., 2, 299 (2008).

    Article  ADS  Google Scholar 

  10. J. Janszky, J. Asbóth, A. Gábris, et al., Fortschr. Phys., 51, 157 (2003).

    Article  Google Scholar 

  11. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett., 75, 826 (1995).

    Article  ADS  Google Scholar 

  12. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt. Lett., 22, 52 (1997).

    Article  ADS  Google Scholar 

  13. V. Chandrasekhar, M. J. Rooks, S. Wind, and D. E. Prober, Phys. Rev. Lett., 55, 1610 (1985).

    Article  ADS  Google Scholar 

  14. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett., 54, 2696 (1985).

    Article  ADS  Google Scholar 

  15. J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett., 78, 1335 (1997).

    Article  ADS  Google Scholar 

  16. D. Grundler, Phys. Rev. Lett., 84, 6074 (2000).

    Article  ADS  Google Scholar 

  17. Y. Aharonov and D. Bohm, Phys. Rev., 115, 485 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. G. Mal’shukov, C. S. Tang, C. S. Chu, and K. A. Chao, Phys. Rev. B, 68, 233307 (2003).

    Article  ADS  Google Scholar 

  19. P. Földi, B. Molnár, M. G. Benedict, and F. M. Peeters, Phys. Rev. B, 71, 033309 (2005).

    Article  ADS  Google Scholar 

  20. P. Földi, O. Kálmán, M. Benedict, and F. Peeters, Nano Lett., 8, 2556 (2008).

    Article  ADS  Google Scholar 

  21. V. K. Kozin, I. V. Iorsh, O. V. Kibis, and I. A. Shelykh, Phys. Rev. B, 97, 035416 (2018).

    Article  ADS  Google Scholar 

  22. F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, Phys. Rev. B, 66, 033107 (2002).

    Article  ADS  Google Scholar 

  23. J. Splettstoesser, M. Governale, and U. Zülicke, Phys. Rev. B, 68, 165341 (2003).

    Article  ADS  Google Scholar 

  24. F. Jun-Sheng and L. Zheng, Chin. Phys. Lett., 26, 080305 (2009).

    Article  Google Scholar 

  25. P. Földi, O. Kálmán, and M. G. Benedict, Phys. Rev. B, 82, 165322 (2010).

    Article  ADS  Google Scholar 

  26. C. Daday, A. Manolescu, D. C. Marinescu, and V. Gudmundsson, Phys. Rev. B, 84, 115311 (2011).

    Article  ADS  Google Scholar 

  27. T. Serevik, T. Birkeland, and G. Oksa, J. Comput. Appl. Math., 225, 56 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Turnbull, D. Robertson, G. Smith, et al., Opt. Commun., 127, 183 (1996).

    Article  ADS  Google Scholar 

  29. J. Arlt and K. Dholakia, Opt. Commun., 177, 297 (2000).

    Article  ADS  Google Scholar 

  30. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press (1995).

  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Földi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mike, P., Szabó, L.Z. & Földi, P. Interaction of Twisted Light with Electrons in Two-Dimensional Quantum Rings. J Russ Laser Res 39, 465–472 (2018). https://doi.org/10.1007/s10946-018-9741-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9741-1

Keywords

Navigation