Skip to main content
Log in

Numerical Simulation of Shock Wave Generation for Ignition of Precompressed Laser Fusion Target

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this work, we investigate the formation of a converging shock wave in a homogeneous spherical target, whose outer layer was heated by a flux of monoenergetic fast electrons of a given particle energy. Ablation pressure generating the wave forms at spherical expansion of a layer of a heated substance, whose areal density remains constant throughout the entire heating process and equal to the product of the initial heating depth and density of the target. The studies are carried out based on numerical calculations using a one-dimensional hydrodynamic code as applied to ignition of a precompressed target by a shock wave (shock ignition), one of the most promising techniques of laser fusion ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Shcherbakov, Fiz. Plazmy, 9, 240 (1983).

    Google Scholar 

  2. R. Betti, C. D. Zhou, K. S. Anderson, et al., Phys. Rev. Lett., 98, 155001 (2007).

    Article  ADS  Google Scholar 

  3. N. V. Zmitrenko and O. R. Rahimly, Preprint No. 55 [in Russian], Keldysh Institute of Applied Mathematics (2016); library.keldysh.ru/preprint.asp?id=2016-55.

  4. M. Lafon, H. Ribeyre, and G. Schurtz, Phys. Plasmas, 17, 052704 (2010).

    Article  ADS  Google Scholar 

  5. O. Klimo, V. T. Tikhonchuk, X. Ribeyre, et al., Phys. Plasmas, 18, 082709 (2011).

    Article  ADS  Google Scholar 

  6. X. Ribeyre, S. Yu. Gus’kov, J.-L. Feugeas, et al., Phys. Plasmas, 20, 062705 (2013).

  7. S. Yu. Gus’kov, JETP Lett., 103, 494 (2016).

  8. G. Guderley, Luftfahrtforschung, 19, 302 (1942).

    MathSciNet  Google Scholar 

  9. S. A. Gayfullin, A. V. Zakharov, N. V. Zmitrenko, et al., in: Packages of Application Programs. Computational Experiment [in Russian], Nauka, Moscow (1983), p. 50

  10. S. I. Braginsky, JETP, 6, 358 (1958).

    ADS  Google Scholar 

  11. A. A. Samarskiy and Yu. P. Popov, Difference Methods for Solving Problems of Gas Dynamics [in Russian], Nauka, Moscow (1992), p. 424.

  12. K. P. Stanyukovich, Unsteady Motion of a Continuous Medium [in Russian], Nauka, Moscow (1971).

  13. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., (Landau and Lifshitz: Course of Theoretical Physics, Volume 6), Pergamon (1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zmitrenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kov, S.Y., Zmitrenko, N.V. & Rahimli, O.R. Numerical Simulation of Shock Wave Generation for Ignition of Precompressed Laser Fusion Target. J Russ Laser Res 39, 242–251 (2018). https://doi.org/10.1007/s10946-018-9714-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9714-4

Keywords

Navigation