Skip to main content
Log in

Multistage Fiber Amplifier with Spectral Compression Elements for High-Energy Laser Pulse Generation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We consider general principles of spectral compression of parabolic pulses in nonlinear optical fibers. It is known that the variance analysis provides a way to describe correctly the evolution of the pulse parameters under the spectral compression. We propose a computational model of multistage amplifier with spectral compression segments incorporated. The model provides the possibility to amplify middle-power input pulses to obtain pulse energies of hundreds of nanojoules with such output spectral characteristics that provide the possibility for further effective enhancement. We also discuss a modification of the model that provides the formation of a parabolic envelope and linear frequency modulation of the output pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Jauregui, J. Limpert, and A. T¨unnermann, Nat. Photonics, 7, 861 (2013).

  2. V. Gapontsev, F. A. Fomin, and M. Abramov, in: Proceedings of Advvanced Solid-State Photonics Topical Meeting, Optical Society of America (2010), Paper AWA1.

  3. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron., 12, 233 (2006).

    Article  Google Scholar 

  4. S. A. Akhmanov, Y. E. D’yakov, and A. S. Chirkin, Statistical Radiophysics and Optics. Stochastic Fluctuations and Waves in Linear Systems, Fizmatlit, Moscow (2010) [in Russian].

  5. I. V. Shutov, A. A. Novikov, and A. S. Chirkin, Quantum Electron., 38, 258 (2008).

    Article  ADS  Google Scholar 

  6. C. Fourcade-Dutin, Q. Bassery, D. Bigourd, et al., Opt. Express, 23, 10103 (2015).

    Article  ADS  Google Scholar 

  7. F. Feng, P. Morin, Y. K. Chembo, et al., Opt. Lett., 40, 455 (2015).

    Article  ADS  Google Scholar 

  8. A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron., 7, 504 (2001).

    Article  Google Scholar 

  9. T. Eidam, J. Rothhardt, F. Stutzki, et al., Opt. Express, 19, 255 (2011).

    Article  ADS  Google Scholar 

  10. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, et al., Phys. Rev. Lett., 84, 6010 (2000).

    Article  ADS  Google Scholar 

  11. D. Korobko, O. Okhotnikov, A. Sysolyatin, et al., J. Opt. Soc. Am. B, 30, 582 (2013).

    Article  ADS  Google Scholar 

  12. I. Zolotovskii, D. Korobko, and D. Sementsov, Phys. Wave Phenom., 21, 110 (2013).

    Article  Google Scholar 

  13. R. H. Stolen and Q. Lin, Phys. Rev. A, 17, 1448 (1978).

    Article  ADS  Google Scholar 

  14. J. P. Limpert, T. Gabler, A. Liem, et al., Appl. Phys. B, 74, 191 (2002).

    Article  ADS  Google Scholar 

  15. J. Limpert, N. Deguil-Robin, I. Manek-Hinninger, et al., Opt. Lett., 30, 714 (2005).

    Article  ADS  Google Scholar 

  16. J. Fatome, B. Kibler, E. R. Andresen, et al., Appl. Opt., 51, 4547 (2012).

    Article  ADS  Google Scholar 

  17. E. R. Andresen, J. M. Dudley, D. Oron, et al., Opt. Lett., 36, 707 (2011).

    Article  ADS  Google Scholar 

  18. S. Boscolo, S. K. Turitsyn, and C. Finot, Opt. Lett., 37, 4531 (2012).

    Article  ADS  Google Scholar 

  19. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press, Boston (2007).

    MATH  Google Scholar 

  20. A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, et al., Quantum Electron., 38, 383 (2008).

    Article  ADS  Google Scholar 

  21. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, San Diego (2003).

    Google Scholar 

  22. I. O. Zolotovskii, D. I. Sementsov, A. K. Senatorov, et al., Quantum Electron., 40, 229 (2010).

    Article  ADS  Google Scholar 

  23. D. A. Korobko, O. G. Okhotnikov, D. A. Stoliarov, et al., IEEE/OSA J. Lightwave Technol., 33, 3643 (2015).

    Article  ADS  Google Scholar 

  24. W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A, 82, 021805 (2010).

    Article  ADS  Google Scholar 

  25. W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron., 18, 389 (2012).

    Article  Google Scholar 

  26. S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett., 39, 438 (2014).

    Article  ADS  Google Scholar 

  27. A. Monmayrant, S. Weber, and B. Chatel, J. Phys. B: At. Mol. Opt. Phys., 43, 103001 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Korobko.

Additional information

Translated from manuscript first submitted on May 30, 2016 and in final form on July 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotovskii, I.O., Korobko, D.A., Sysoliatin, A.A. et al. Multistage Fiber Amplifier with Spectral Compression Elements for High-Energy Laser Pulse Generation. J Russ Laser Res 37, 448–458 (2016). https://doi.org/10.1007/s10946-016-9596-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9596-2

Keywords

Navigation