Skip to main content

Advertisement

Log in

Description of Classical and Quantum Interference in View of the Concept of Flow Line

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Bohmian mechanics, a hydrodynamic formulation of quantum mechanics, relies on the concept of trajectory, which evolves in time in compliance with dynamical information conveyed by the wave function. Here, this appealing idea is considered to analyze both classical and quantum interference, thus providing an alternative and more intuitive framework to understand the time evolution of waves either in terms of the flow of energy (for instance, for mechanical waves, sound waves, and electromagnetic waves) or analogously the flow of probability (quantum waves). Furthermore, this procedure also supplies a more robust explanation of interference phenomena, which currently is only based on the superposition principle. That is, while this principle only describes how different waves combine and what effects these combinations may lead to, flow lines provide a more precise explanation on how the energy or probability propagates in space before, during, and after the combination of such waves, without dealing with them separately (i.e., the combination or superposition is taken as a whole). In this sense, concepts such as constructive and destructive interference, typically associated with the superposition principle, physically correspond to more or less dense swarms of (energy or probability) flow lines. A direct consequence of this description is that, when considering the distribution of electromagnetic energy flow lines behind two slits, each one covered by a differently oriented polarizer, it is naturally found that external observers’ information on the slit crossed by single photons (understood as energy parcels) is totally irrelevant for the existence of interference fringes, in striking contrast to what is commonly stated and taught.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. G. Main, Vibrations and Waves in Physics, 3rd ed., Cambridge University Press (1993).

  2. J. D. Cutnell and K. W. Johnson, Physics, John Wiley & Sons, New York (1995).

    Google Scholar 

  3. I. E. Irodov, Wave Processes [in Russian], Laboratoriya Bazovykh Znanii, Moscow (2002).

    Google Scholar 

  4. J. Z. H. Zhang, Theory and Application of Quantum Molecular Dynamics,World Scientific, Singapore (1999).

    Google Scholar 

  5. D. J. Tannor, Introduction to Quantum Mechanics. A Time-Dependent Perspective, University Science Books, Sausalito, CA (2007).

    Google Scholar 

  6. R. V. Waterhouse, T. W. Yates, D. Feit, and Y. N. Liu, J. Acoust. Soc. Am., 78, 758 (1985).

    Article  ADS  Google Scholar 

  7. R. V. Waterhouse and D. Feit, J. Acoust. Soc. Am., 80, 681 (1986).

    Article  ADS  Google Scholar 

  8. E. A. Skelton and R. V. Waterhouse, J. Acoust. Soc. Am., 80, 1473 (1986).

    Article  ADS  Google Scholar 

  9. R. V. Waterhouse, D. G. Crighton, and J. E. Ffowcs-Williams, J. Acoust. Soc. Am., 81, 1323 (1987).

    Article  ADS  Google Scholar 

  10. R. V. Waterhouse, J. Acoust. Soc. Am., 82, 1782 (1987).

    Article  ADS  Google Scholar 

  11. A. S. Sanz, J. Phys.: Conf. Ser., 504, 012028 (2014).

    ADS  Google Scholar 

  12. A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, Ann. Phys., 325, 763 (2010).

    Article  MATH  ADS  Google Scholar 

  13. S. Kocsis, B. Braverman, S. Ravets, et al., Science, 332, 1170 (2011).

    Article  ADS  Google Scholar 

  14. J. S. Lundeen, B. Sutherland, A. Patel, et al., Nature, 474, 188 (2011).

    Article  Google Scholar 

  15. Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett., 60, 1351 (1988).

    Article  ADS  Google Scholar 

  16. A. Ibort, V. I. Man’ko, G. Marmo, et al., Phys. Scr., 79, 065013 (2009).

    Article  ADS  Google Scholar 

  17. H. Kuttruff, Acoustics: An Introduction, Taylor & Francis, New York (2007).

    Google Scholar 

  18. A. F. Nikiforov, Equations and Methods of Mathematical Physics [in Russian], Intellekt Press, Dolgoprudnyí, Moscow Region, Russia (2009).

    Google Scholar 

  19. N. A. Umov, Z. Math. Phys., 19, 97 (1874).

    Google Scholar 

  20. M. Born and E. Wolf, Principles of Optics, 7th ed., Wiley, New York (1999).

    Book  Google Scholar 

  21. D. Arsenović, M. Božić, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 26, 94 (2005).

    Article  Google Scholar 

  22. P. Ya. Ufimtsev, Fundamentals of the Physical Theory of Diffraction, John Wiley & Sons, Hoboken, NJ (2007).

    Book  Google Scholar 

  23. A. S. Sanz and S. Miret-Artés, J. Phys. A: Math. Gen., 41, 435303 (2008).

    Article  ADS  Google Scholar 

  24. A. S. Sanz and S. Miret-Artés, A Trajectory Description of Quantum Processes. I. Fundamentals, Lecture Notes in Physics, Springer, Berlin (2012), Vol. 850.

    Book  Google Scholar 

  25. A. S. Sanz and S. Miret-Artés, A Trajectory Description of Quantum Processes. II. Applications, Lecture Notes in Physics, Springer, Berlin (2014), Vol. 831.

    Book  Google Scholar 

  26. A. S. Sanz, “An account on quantum interference from a hydrodynamical perspective,” in: K. H. Hughes and G. Parlant (Eds.), Quantum Trajectories, CCP6, Daresbury, UK (2011).

    Google Scholar 

  27. A. S. Sanz and S. Miret-Artés, Am. J. Phys., 80, 525 (2012).

    Article  ADS  Google Scholar 

  28. H. Kuttruff, Room Acoustics, 4th ed., Taylor & Francis, New York (2000).

    Google Scholar 

  29. A. Billon and J.-J. Embrechts, Proceedings of the Acoustics 2012 Nantes Conference, p. 2385 [http://hdl.handle.net/2268/119352] (2012).

  30. A. Billon and J.-J. Embrechts, Acta Acustica united with Acustica, 99, 260 (2013).

    Article  Google Scholar 

  31. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).

  32. H. A. Kramers, Quantum Mechanics, North-Holland, Amsterdam (1958).

    Google Scholar 

  33. E. A. Power, Introductory Quantum Electrodynamics, Longman, London (1964).

    MATH  Google Scholar 

  34. D. Bohm, Quantum Theory, Englewood Cliffs, Prentice-Hall, NJ (1951); [reprinted by Dover, New York (1989)].

  35. M. G. Raymer and B. J. Smith, Proc. SPIE, 5866, 1 (2005).

    Article  Google Scholar 

  36. I. Bialinicki-Birula, Acta Phys. Pol., 34, 845 (1995).

    Google Scholar 

  37. I. Bialinicki-Birula, “Photon wave function,” in: E. Wolf (Ed.), Progress in Optics, Elsevier, Amsterdam (1996), Vol. XXXVI.

    Google Scholar 

  38. I. Bialinicki-Birula, Phys. Rev. Lett., 80, 5247 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  39. P. R. Holland, The Quantum Theory of Motion, Cambridge University Press (1993).

  40. R. D. Prosser, Int. J. Theor. Phys., 15, 169 (1976).

    Article  Google Scholar 

  41. R. D. Prosser, Int. J. Theor. Phys., 15, 181 (1976).

    Article  Google Scholar 

  42. M. Davidović, A. S. Sanz, D. Arsenović, et al., Phys. Scr., T135, 014009 (2009).

    Article  ADS  Google Scholar 

  43. C.-C. Chou and R. E. Wyatt, Phys. Scr., 83, 065403 (2011).

    Article  ADS  Google Scholar 

  44. J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York (1998).

    Google Scholar 

  45. P. Ghose, A. S. Majumdar, S. Guha, and J. Sau, Phys. Lett. A, 290, 205 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. M. Božić, M. Davidović, T. L. Dimitrova, et al., J. Russ. Laser Res., 31, 117 (2010).

    Article  Google Scholar 

  47. M. Davidović, A. S. Sanz, M. Božić, et al., Phys. Scr., T153, 014015 (2013).

    Article  ADS  Google Scholar 

  48. M. Davidović and A. S. Sanz, Europhys. News, 44, 33 (2013).

    Article  ADS  Google Scholar 

  49. M. F. Pusey, J. Barrett, and T. Rudolph, Nature Phys., 8, 475 (2012).

    Article  ADS  Google Scholar 

  50. A. S. Sanz, F. Borondo, and S. Miret-Artés, J. Phys.: Condens. Matter, 14, 6109 (2002).

    ADS  Google Scholar 

  51. M. Gondran and A. Gondran, Am. J. Phys., 78, 598 (2010).

    Article  ADS  Google Scholar 

  52. D. Bohm and B. J. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory, Routledge, London, New York (1993).

    Google Scholar 

  53. P. G. Merli, G. F. Merli, and G. Pozzi, Am. J. Phys., 44, 306 (1976).

    Article  ADS  Google Scholar 

  54. H. Rauch and S. Werner, Neutron Interferometry: Lessons on Experimental Quantum Mechanics, Clarendon, Oxford (2000).

    Google Scholar 

  55. P. R. Berman (Ed.), Atom Interferometry, Academic Press, New York (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Božić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidović, M., Sanz, Á.S. & Božić, M. Description of Classical and Quantum Interference in View of the Concept of Flow Line. J Russ Laser Res 36, 329–342 (2015). https://doi.org/10.1007/s10946-015-9507-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9507-y

Keywords

Navigation