Skip to main content
Log in

Absorption of Light by Hybrid Metalorganic Nanostructures of Elongated Shape

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We report results of numerical simulations of absorption spectra of two-layer and three-layer elongated nanostructures consisting of a metallic core and an outer shell of molecular J-aggregates of cyanine dyes. Calculations of the absorption cross sections are carried out in a wide wavelength range, using the analytical formulas of quasistatic approximation for confocal spheroids and the FDTD-method for rod-like and dumbbell-like composite nanostructures. We study the dependences of the cross sections on the specific shape of an elongated nanostructure, its geometrical parameters, as well as on the transition oscillator strength in the J-band of molecular aggregates. We show that the variation of the shape, sizes, and optical constants of such hybrid complexes makes it possible to control effectively the strength of the plasmon–exciton coupling in the system. As compared to the case of the two-layer and three-layer spherical particles, in this work we demonstrate a number of new features in the absorption spectra of metalorganic nanostructures of spheroidal and complex shapes. The results obtained can be used in the research of novel composite materials for their potential application in hybrid organic/inorganic nanophotonics and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohtsu (Ed.), Nanophotonics and Nanofabrication, Wiley, Wenheim (2009).

    Google Scholar 

  2. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, New York (2010).

    Book  Google Scholar 

  3. S. Li, M. M. Lin, M. S. Toprak, et al., Nano Rev., 1, 5214 (2010).

    Article  Google Scholar 

  4. V. M. Agranovich, Yu. N. Gartstein, and M. Litinskaya, Chem. Rev., 111, 5179 (2011).

    Article  Google Scholar 

  5. N. J. Halas, S. Lal, W.-S. Chang, et al., Chem. Rev., 111, 3913 (2011).

    Article  Google Scholar 

  6. N. Zhao, T. P. Osedach, L.-Y. Chang, et al., ACS Nano, 4, 3743 (2010).

    Article  Google Scholar 

  7. S. Ren, L.-Y. Chang, S.-K. Lim, et al., Nano Lett., 11, 3998 (2011).

    Article  ADS  Google Scholar 

  8. L.-Y. Chang, R. R. Lunt, P. R. Brown, et al., Nano Lett., 13, 994 (2013).

    Article  ADS  Google Scholar 

  9. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, Nature Photon., 5, 543 (2011).

    Article  ADS  Google Scholar 

  10. A. A. Vashchenko, V. S. Lebedev, A. G. Vitukhnovskii, et al., JETP Lett., 96, 113 (2012) [Pis’ma Zh. Éksp. Teor. Fiz., 96, 118 (2012)].

  11. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, Nature Photon., 7, 13 (2013).

    Article  ADS  Google Scholar 

  12. A. G. Vitukhnovskii, A. A. Vashchenko, V. S. Lebedev, et al., Semiconductors, 47, 971 (2013) [Fiz. Tekhn. Poluprovodnikov, 47, 962 (2013)].

  13. K. W. Song, R. Costi, and V. Bulović, Adv. Mater., 25, 1420 (2013).

    Article  Google Scholar 

  14. J. I. Wong, N. Mishra, G. Xing, et al., ACS Nano, 8, 2873 (2014).

    Article  Google Scholar 

  15. A. A. Vashchenko, A. G. Vitukhnovskii, V. S. Lebedev, et al., JETP Lett., 100, 86 (2014) [Pis’ma Zh. Éksp. Teor. Fiz., 100, 94 (2014)].

  16. A. G. Vitukhnovsky, V. S. Lebedev, A. S. Selyukov, et al., Chem. Phys. Lett., 619, 185 (2015).

    Article  ADS  Google Scholar 

  17. M. A. Noginov, G. Zhu, A. M. Belgrave, et al., Nature, 460, 1110 (2009).

    Article  ADS  Google Scholar 

  18. J. Y. Suh, C. H. Kim, W. Zhou, et al., Nano Lett., 12, 5769 (2012).

    Article  ADS  Google Scholar 

  19. M. Khajavikhan, A. Simic, M. Katz, et al., Nature, 482, 204 (2012).

    Article  ADS  Google Scholar 

  20. I. E. Protsenko, Phys. Uspekhi, 55 1040 (2012) [Usp. Fiz. Nauk, 82, 1116 (2012)].

  21. A. Naber, D. Molenda, U. C. Fischer, et al., Phys. Rev. Lett., 89, 210801 (2002).

    Article  ADS  Google Scholar 

  22. T. I. Kuznetsova and V. S. Lebedev, Quantum Electron., 33, 931 (2003) [Kvanovaya Elektron., 33, 931 (2003)].

  23. S. Patanè, P. G. Gucciardi, M. Labardi, and M. Allegrini, Rivista Del Nuovo Cimento, 27, 1 (2004).

    ADS  Google Scholar 

  24. T. I. Kuznetsova, V. S. Lebedev, and A. M. Tsvelik, J. Opt. A: Pure Appl. Opt., 6, 338 (2004).

    Article  ADS  Google Scholar 

  25. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. B, 70, 035107 (2004).

    Article  ADS  Google Scholar 

  26. T. I. Kuznetsova and V. S. Lebedev, JETP Lett., 79, 62 (2004) [Pis’ma Zh. Éksp. Teor. Fiz. 79, 70 (2004)].

  27. T. I. Kuznetsova and V. S. Lebedev, Quantum Electron., 34, 361 (2004) [Kvanovaya Elektron., 34, 361 (2004)].

  28. T. I. Kuznetsova and V. S. Lebedev, J. Russ. Laser Res., 27, 92 (2006).

    Article  Google Scholar 

  29. L. Novotny and S. J. Stranick, Ann. Rev. Phys. Chem., 57, 303 (2006).

    Article  ADS  Google Scholar 

  30. A. Zayats and D. Richards, Nano-Optics and Near-Field Optical Microscopy, Artech House, Boston/London (2009).

    Google Scholar 

  31. C. Huber, A. Trügler, U. Hoheneste, et al., Phys. Chem. Chem. Phys., 16, 2289 (2014).

    Article  Google Scholar 

  32. T. I. Kuznetsova and V. S. Lebedev, Quantum Electron., 32, 727 (2002) [Kvantovaya Elektron., 32, 727 (2002)].

  33. R. Jones, H. Rong, A. Liu, et al., Opt. Express, 13, 519 (2005).

    Article  ADS  Google Scholar 

  34. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. E, 78, 016607 (2008).

    Article  ADS  Google Scholar 

  35. T. I. Kuznetsova and V. S. Lebedev, J. Russ. Laser Res., 29, 1 (2008).

    Article  Google Scholar 

  36. T. I. Kuznetsova and V. S. Lebedev, Quantum Electron., 39, 455 (2009) [Kvantovaya Elektron., 39, 455 (2009)].

  37. T. I. Kuznetsova and V. S. Lebedev, Quantum Electron., 39, 575 (2009) [Kvantovaya Elektron., 39, 575 (2009)].

  38. D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photon., 8, 13 (2014).

    Article  ADS  Google Scholar 

  39. M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).

    Article  Google Scholar 

  40. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005).

    Article  Google Scholar 

  41. F. J. Garcia de Abajo, Rev. Mod. Phys., 79, 1267 (2007).

    Article  ADS  Google Scholar 

  42. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and beyond, Wiley, (2011).

  43. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett., 461, 171 (2008).

    Article  ADS  Google Scholar 

  44. V. S. Lebedev, A. G. Vitukhnovsky, A. Yoshida, et al., Colloids Surf. A: Physicochem. Eng. Aspects, 326, 204 (2008).

    Article  Google Scholar 

  45. H. Chen, T. Ming, L. Zhao, et al., Nano Today, 5, 494 (2010).

    Article  Google Scholar 

  46. G. Zengin, G. Johansson, P. Johansson, et al., Sci. Rep., 3, 3074 (2013).

    Article  ADS  Google Scholar 

  47. T. J. Antosiewicz, S. P. Apell, and T. Shegai, ACS Photon., 1, 454 (2014).

    Article  Google Scholar 

  48. T. Kobayashi (Ed.), J-Aggregates, World Scientific, Singapore (1996).

    Google Scholar 

  49. N. Kometani, M. Tsubonishi, T. Fujita, et al., Langmuir, 17, 578 (2001).

    Article  Google Scholar 

  50. T. Sato, F. Tsugawa, T. Tomita, and M. Kawasaki, Chem. Lett., 30, 402 (2001).

    Article  Google Scholar 

  51. J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, J. Amer. Chem. Soc., 124, 4536 (2002).

    Article  Google Scholar 

  52. G.A. Wurtz, J. Hranisavljevic, and G. P. Wiederrecht, J. Microsc., 210, 340 (2003).

    Article  MathSciNet  Google Scholar 

  53. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, Nano Lett., 4, 2121 (2004).

    Article  ADS  Google Scholar 

  54. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, et al., Quantum Electron., 40, 246 (2010) [Kvantovaya Elektron., 40, 246 (2010)].

  55. T. Uwada, R. Toyota, H. Masuhara, and T. Asahi, J. Phys. Chem. C, 111, 1549 (2007).

    Article  Google Scholar 

  56. D. D. Lekeufack, A. Brioude, A. W. Coleman, et al., Appl. Phys. Lett., 96, 253107 (2010).

    Article  ADS  Google Scholar 

  57. V. S. Lebedev and A. S. Medvedev, Quantum Electron., 42, 701 (2012) [Kvantovaya Elektron., 42, 701 (2012)].

  58. V. S. Lebedev and A. S. Medvedev, J. Russ. Laser Res., 34, 303 (2013).

    Article  Google Scholar 

  59. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York (1998).

    Book  Google Scholar 

  60. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin, Springer (1995).

    Book  Google Scholar 

  61. A. Yoshida, Y. Yonezawa, and N. Kometani, Langmuir, 25, 6683 (2009).

    Article  Google Scholar 

  62. A. Yoshida and N. Kometani, J. Phys. Chem. C, 114, 2867 (2010).

    Article  Google Scholar 

  63. B. G. DeLacy, W. Qiu, M. Soljačić, et al., Opt. Express, 21, 19103 (2013).

    Article  ADS  Google Scholar 

  64. A. S. Medvedev and V. S. Lebedev, Bull. Lebedev Phys. Inst., 37, 177 (2010) [Kratkie Soobshcheniya po Fizike, No. 6, 23 (2010)].

  65. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., Elsevier, Amsterdam (2004).

    Google Scholar 

  66. B. K. P. Scaife, Principles of Dielectrics, Oxford Science Publications, Oxford, UK (1998).

    Google Scholar 

  67. V. S. Lebedev and A. S. Medvedev, Quantum Electron., 43, 1065 (2013) [Kvantovaya Elektron., 43, 1065 (2013)].

  68. G. A. Wurtz, P. R. Evans, W. Hendren, et al., Nano Lett., 7, 1297 (2007).

    Article  ADS  Google Scholar 

  69. A. Yoshida, N. Uchida, and N. Kometani, Langmuir, 25, 11802 (2009).

    Article  Google Scholar 

  70. B. I. Shapiro, E. S. Koltsova, A. G. Vitukhnovsky et al., Nanotechnol. in Russia, 6, 456 (2011) [Rossiiskie Nanotekhnologii, 6, 83 (2011)].

  71. A. L. Aden and M. Kerker, J. Appl. Phys., 22, 1242 (1951).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. A. Güttler, Ann. Phys. (Leipzig), 11, 65 (1952).

    Article  MATH  Google Scholar 

  73. R. Bhandari, Appl. Opt., 24, 1960 (1985).

    Article  ADS  Google Scholar 

  74. Z. C. Wu and Y. P. Wang, Radio Sci., 26, 1393 (1991).

    Article  ADS  Google Scholar 

  75. J. Sinzig and M. Quinten, Appl. Phys. A, 58, 157 (1994).

    Article  ADS  Google Scholar 

  76. A. Irimajiri, T. Hanai, and A. Inouye, J. Theor. Biolog., 78, 251 (1979).

    Article  Google Scholar 

  77. N. V. Voshchinnikov and V. G. Farafonov, Astrophys. Space Sci., 204, 19 (1993).

    Article  ADS  Google Scholar 

  78. D. S. Wang and M. Kerker, Phys. Rev. B, 25, 2433 (1982).

    Article  ADS  Google Scholar 

  79. A. Taflove and S. C. Hagnes, Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd ed., Artech House, Boston (2005).

    Google Scholar 

  80. R. Ruppin and H. Yatom, Phys. Status Solidi B, 74, 647 (1976).

    Article  ADS  Google Scholar 

  81. A. Moroz, J. Phys. Chem. C, 112, 10641 (2008).

    Article  Google Scholar 

  82. N. G. Khlebtsov, Quantum Electron., 38, 504 (2008) [Kvantovaya Elektron., 38, 504 (2008)].

  83. N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transfer, 123, 184 (2013).

    Article  ADS  Google Scholar 

  84. P. M. Tomchuk and N. I. Grigorchuk, Phys. Rev. B, 73, 155423 (2006).

    Article  ADS  Google Scholar 

  85. D. Pines and P. Nozières, The Theory of Quantum Liquids, W. A. Benjamin, Inc., New York (1966), Vol. I.

    Google Scholar 

  86. J.-Y. Bigot, J.-C. Merle, O. Cregut, and A. Daunois, Phys. Rev. Lett., 75, 4702 (1995).

    Article  ADS  Google Scholar 

  87. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, 4370 (1972).

    Article  ADS  Google Scholar 

  88. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 16th ed., Longman (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Lebedev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondorskiy, A.D., Kislov, K.S., Lam, N.T. et al. Absorption of Light by Hybrid Metalorganic Nanostructures of Elongated Shape. J Russ Laser Res 36, 175–192 (2015). https://doi.org/10.1007/s10946-015-9491-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9491-2

Keywords

Navigation