Skip to main content
Log in

Adiabatic Population Transfer Based on a Double Stimulated Raman Adiabatic Passage

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Stimulated Raman adiabatic passage (STIRAP) is an adiabatic population-transfer technique that uses two coherent laser pulses in counter-intuitive order, namely, pump and stoke, to achieve complete transfer between two quantum states. Here, we propose a double STIRAP scheme whereby the electronic levels of a four-level atom are coupled by three laser fields forming two pairs of stoke and pump pulses. We derive the optical Bloch equations through the master equation for studying the population dynamics. We show that manipulating the time between two STIRAP sequences provides the state transfer near unity. In particular, we show that there occurs a certain maximum transfer efficiency that can be achieved in the double STIRAP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Haroche and J. M. Raimond, Exploring the Quantum, Oxford Graduate Texts, Oxford (2006).

    Book  MATH  Google Scholar 

  2. K. Bergmann and B. W. Shore, in: H. L. Dai and R. W. Field (Eds.), Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, World Scientific, Singapore (1995).

    Google Scholar 

  3. J. Oreg, G. Hazak, and J. H. Eberly, Phys. Rev. A, 32, 27760 (1985).

    Article  Google Scholar 

  4. D. Moller, L. B. Madsen, and K. Molmer, Phys. Rev. Lett., 100, 170504 (2008).

    Article  ADS  Google Scholar 

  5. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys., 77, 633 (2005).

    Article  ADS  Google Scholar 

  6. J. J. García-Ripoll, P. Zoller and J. I. Cirac, Phys. Rev. A, 71, 062309 (2005).

    Article  ADS  Google Scholar 

  7. Marlan O. Scully and M. Suhail Zubairy, Quantum Optics, Cambridge University Press (1997).

  8. C. Champenois, G. Morigi, and J. Eschner, Phys. Rev. A, 74, 053404 (2006).

    Article  ADS  Google Scholar 

  9. Otto Stern, “Bending a molecular ray by crystal lattice face,” Naturwissenschaften, 17, 391 (1929).

  10. I. Estermann, Am. J. Phys., 43, 661 (1975).

    Article  ADS  Google Scholar 

  11. M. Saffman, T. G. Walker, and K. Molmer, Rev. Mod. Phys., 82, 2313 (2010).

    Article  ADS  Google Scholar 

  12. M. Saffman and K. Molmer, Phys. Rev. Lett., 102, 240502 (2009).

    Article  ADS  Google Scholar 

  13. J. Dieglmayr, M. Reetz-Lamour, T. Amthor, et al., Opt. Commun., 264, 293 (2006).

    Article  ADS  Google Scholar 

  14. M. Reetz-Lamour, J. Deiglmayr, T. Amthor, and M. Weidemuller, New J. Phys., 10, 045026 (2008).

    Article  ADS  Google Scholar 

  15. T. A. Johnson, E. Urban, T. Henage, et al., Phys. Rev. Lett., 100, 113003 (2008).

    Article  ADS  Google Scholar 

  16. E. Urban, T. A. Johnson, T. Henage, et al., Nature Phys., 5, 110 (2009).

    Article  ADS  Google Scholar 

  17. T. Vogt, M. Viteau, J. Zhao, et al., Phys. Rev. Lett., 97, 083003 (2006).

    Article  ADS  Google Scholar 

  18. A. Gaëtan, Y. Miroshnychenko, T. Wilk, et al., Nature Phys., 5, 115 (2009).

    Article  ADS  Google Scholar 

  19. S. E. Harris, Phys. Today, 50, 36 (1997).

    Article  Google Scholar 

  20. G. S. Agarwal and Sumei Huang, Phys. Rev. A, 81, 041803(R) (2010).

    Article  ADS  Google Scholar 

  21. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento B, 36, 5 (1976).

    Article  ADS  Google Scholar 

  22. M. D. Lukin, Rev. Mod. Phys., 75, 457 (2003).

    Article  ADS  Google Scholar 

  23. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys., 70, 1003 (1998).

    Article  ADS  Google Scholar 

  24. I. I. Beterov, M. Saffman, E. A. Yakshina, et al., Phys. Rev. A, 88, 010303(R) (2013).

    Article  ADS  Google Scholar 

  25. D. Moller, L. B. Madsen, and K. Molmer, Phys. Rev. Lett., 100, 170504 (2008).

    Article  ADS  Google Scholar 

  26. P. Marte, P. Zoller, and J. L. Hall, Phys. Rev. A, 44, 4118(R) (1991).

    Article  ADS  Google Scholar 

  27. Z. Kis and F. Renzoni, Phys. Rev. A, 65, 032318 (2002).

    Article  ADS  Google Scholar 

  28. T. Pohl, E. Demler, and M. D. Lukin, Phys. Rev. Lett., 104, 043002 (2010).

    Article  ADS  Google Scholar 

  29. I. I. Beterov, D. B. Tretyakov, V. M. Entin, et al., Phys. Rev. A 84, 023413 (2011).

    Article  ADS  Google Scholar 

  30. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, Phys. Rev. A, 40, 6741 (1989).

    Article  ADS  Google Scholar 

  31. M. J. Akram and F. Saif, “EIT controlled robust population transfer” (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Javed Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M.J., Saif, F. Adiabatic Population Transfer Based on a Double Stimulated Raman Adiabatic Passage. J Russ Laser Res 35, 547–554 (2014). https://doi.org/10.1007/s10946-014-9461-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-014-9461-0

Keywords

Navigation