Skip to main content
Log in

Amplification and Guiding of Microwave Radiation in a Plasma Channel Created by an Ultrashort High-Intensity Laser Pulse in Noble Gases

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We develop an analytical model of the evolution of a plasma channel produced in rare gases (argon and xenon) by a femtosecond KrF laser pulse. We show that the strong nonequilibrium of the photoelectron energy spectrum and the presence of the Ramsauer minimum in the transport scattering cross section makes the channel optically more dense as compared to the non-ionized gas in the microwave frequency band, and consequently such a channel appears to be a waveguide. In xenon, this nonequilibrium state of the plasma leads to the transportation and amplification of the microwave signal during the relaxation process of the photoelectron energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Couairon and A. Mysyrowicz, Phys. Rep. , 441, 47 (2007).

    Article  ADS  Google Scholar 

  2. S. L. Chin, Femtosecond Laser Filamentation, Springer Verlag, New York (2010).

    Book  Google Scholar 

  3. P. Agostini and L. F. Di Mauro, Rep. Prog. Phys., 67, 813 (2004).

    Article  ADS  Google Scholar 

  4. F. Krausz and M. Ivanov, Rev. Mod. Phys., 81, 163 (2009).

    Article  ADS  Google Scholar 

  5. X. M. Zhao, Y. C. Wang, J.-C. Diels, and J. Elizondo IEEE J. Quantum Electron., 31, 599 (1995).

  6. S. Tzortzakis, M. A. Franco, Y.-B. Andre, et al., Phys. Rev. E, 60, R3505 (1999).

    Article  ADS  Google Scholar 

  7. M. Rodriguez, R. Sauerbrey, H. Wille, et al., Opt. Lett., 27, 772 (2002).

    Article  ADS  Google Scholar 

  8. A. A. Ionin, S. V. Kudryashov, A. O. Levchenko, et al., Appl. Phys. Lett., 100, 104105 (2012).

    Article  ADS  Google Scholar 

  9. J. Penano, P. Sprangle, B. Hafiz, et al., J. Appl. Phys., 111, 033105 (2012).

    Article  ADS  Google Scholar 

  10. M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, Appl. Phys. Lett., 92, 091104 (2008).

    Article  ADS  Google Scholar 

  11. V. D. Zvorykin, A. O. Levchenko, I. V. Smetanin, and N. N. Ustinovski, JETP Lett., 91, 226 (2010).

    Article  ADS  Google Scholar 

  12. C. D. Amico, A. Houard, S. Akturk, et al., New J. Phys., 10, 013015 (2008).

    Article  ADS  Google Scholar 

  13. S.I. Mitryukovskiy, Yi Liu, B. Prade, et al., Appl. Phys. Lett., 102, 221107 (2013).

    Article  ADS  Google Scholar 

  14. G. Point, Yi Liu, Y. Brelet, et al., Opt. Lett., 39, 1725 (2014).

    Article  ADS  Google Scholar 

  15. A. E. Dormidontov, V. V. Valuev, V. L. Dmitriev, et al., Proc. SPIE, 6733, 67332S, (2007).

    Article  ADS  Google Scholar 

  16. A. Marian, M. El Morsli, F. Vidal, et al., Phys. Plasmas, 20, 023301 (2013).

    Article  ADS  Google Scholar 

  17. V. D. Zvorykin, A. O. Levchenko, A. V. Shutov, et al., Phys. Plasmas, 19, 033509 (2012).

    Article  ADS  Google Scholar 

  18. G. Bekefi, Y. L. Hirshfield, and S. C. Brown, Phys. Fluids, 4, 173 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  19. F. V. Bunkin, A. E. Kazakov, and M. V. Fedorov, Sov. Phys. Usp., 15, 416 (1972).

    Article  ADS  Google Scholar 

  20. A. V. Bogatskaya and A. M. Popov, JETP Lett., 97, 388 (2013).

    Article  ADS  Google Scholar 

  21. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Quantum Electron., 43, 1110 (2013).

    Article  ADS  Google Scholar 

  22. M. Hayashi, J. Phys. D, 16, 581 (1983).

    Article  ADS  Google Scholar 

  23. A. V. Phelps, JILA Information Center Report (1985), Vol. 28.

  24. V. L. Ginzburg and A. V. Gurevich, Sov. Phys. Usp., 3, 115 (1960).

    Article  ADS  Google Scholar 

  25. L. A. Vainstein, Electromagnetic Waves [in Russian], Radio i Svyaz, Moscow (1988).

    Google Scholar 

  26. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, London (1941).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bogatskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatskaya, A.V., Popov, A.M. & Smetanin, I.V. Amplification and Guiding of Microwave Radiation in a Plasma Channel Created by an Ultrashort High-Intensity Laser Pulse in Noble Gases. J Russ Laser Res 35, 437–446 (2014). https://doi.org/10.1007/s10946-014-9445-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-014-9445-0

Keywords

Navigation