Skip to main content
Log in

Tuning crystal size and inhibiting aggregation by adding guanidinoacetic acid in ZSM-5 zeolite synthesis for catalysing methanol-to-olefin reaction

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nanosized ZSM-5 zeolite with high-quality is highly desired in industrial application. This paper reports an approach of rapid synthesis of this type zeolite, being realized by crystallizing gels with the Si/Al atomic ratio of 12.5–80 at 170 ℃ for 12 h under assistance of guanidinoacetic acid (GAA). As a result, the zeolite obtained from the synthesis possesses little crystal size (120–220 nm), high-quality and good monodispersity. Being associated with the superior morphology and structure, the zeolite displayed not only longer one-pass catalytic lifetime but also much higher regeneration stability in methanol-to-olefin reaction, comparing with the zeolite synthesized without GAA addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. G. Bonilla, I. Díaz, M. Tsapatsis, H.-K. Jeong, Y. Lee, D.G. Vlachos, Zeolite (MFI) crystal morphology control using Organic structure-directing agents. Chem. Mater. 16(26), 5697–5705 (2004)

    Article  CAS  Google Scholar 

  2. C.M. Lok, J.V. Doorn, G.A. Almansa, Promoted ZSM-5 catalysts for the production of bio-aromatics, a review. Renew. Sustain. Energy Rev. 113, 109248 (2019)

    Article  Google Scholar 

  3. N. Shu, R. Liu, M.M. Rahman, M. Sarker, M. Chai, C. Li, J. Cai, A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure. Fuel Process. Technol. 199, 106301 (2020)

    Article  Google Scholar 

  4. S.M. Alipour, Recent advances in naphtha catalytic cracking by nano ZSM-5: a review. Chin. J. Catal. 37(5), 671–680 (2016)

    Article  Google Scholar 

  5. F. Dawaymeh, D.A. Gaber, S.A. Gaber, K.S.K. Reddy, G. Basina, I. Ismail, A. Subrati, O. Ismail, G.N. Karanikolos, Al Wahedi, Water adsorption behavior of mg and Fe substituted microporous AlPO4-5. J. Water Process. Eng. 49, 103079 (2022)

    Article  Google Scholar 

  6. S.A. Gaber, F. Dawaymeh, D.A. Gaber, G. Basina, I. Ismail, A. Tharakshmy, A. AlYafeai, A. Subrati, G.N. Karanikolos, S. Al Hashimi, Al Wahedi, Combined DFT and experimental investigation on ion isomorphic substitution of aluminophosphate microporous crystals. Microporous Mesoporous Mater. 294, 109859 (2020)

    Article  CAS  Google Scholar 

  7. N. Priharto, S. Ghysels, M. Pala, W. Opsomer, F. Ronsse, G. Yildiz, H.J. Heeres, P.J. Deuss, W. Prins, Ex situ Catalytic fast pyrolysis of lignin-rich digested stillage over Na/ZSM-5, H/ZSM-5, and Fe/ZSM-5. Energy Fuels. 34, 12710–12723 (2020)

    Article  CAS  Google Scholar 

  8. L. Sun, X. Zhang, L. Chen, B. Zhao, S. Yang, X. Xie, Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. J. Anal. Appl. Pyrol. 121, 342–346 (2016)

    Article  CAS  Google Scholar 

  9. M. Miyamoto, S. Ono, Y. Oumi, S. Uemiya, S. Van der Perre, T. Virdis, G.V. Baron, J.F.M. Denayer, Nanoporous ZSM-5 crystals coated with Silicalite-1 for enhanced p-Xylene separation. ACS Appl. Nano Mater. 2, 2642–2650 (2019)

    Article  CAS  Google Scholar 

  10. S.M. Mirfendereski, T. Mazaheri, Preparation of high performance ZSM-5 zeolite membranes for CO2/H2 separation. J. Ind. Eng. Chem. 94, 240–252 (2021)

    Article  CAS  Google Scholar 

  11. B. Zhou, Q. Ke, K. Chen, M. Wen, G. Cui, Y. Zhou, Z. Gu, X. Weng, H. Lu, Adsorption and catalytic ozonation of toluene on Mn/ZSM-5 at low temperature. Appl. Catal. A 657, 119146 (2023)

    Article  CAS  Google Scholar 

  12. H. Li, L. Dong, L. Zhao, L. Cao, J. Gao, C. Xu, Enhanced adsorption desulfurization performance over Mesoporous ZSM-5 by Alkali Treatment. Ind. Eng. Chem. Res. 56, 3813–3821 (2017)

    Article  CAS  Google Scholar 

  13. N. Liu, X. Zhu, S. Hua, D. Guo, H. Yue, B. Xue, Y. Li, A facile strategy for preparation of phosphorus modified HZSM-5 shape-selective catalysts and its performances in disproportionation of toluene. Catal Commun. 77, 60–64 (2016)

    Article  CAS  Google Scholar 

  14. S. Suganuma, K. Nakamura, A. Okuda, N. Katada, Enhancement of catalytic activity for toluene disproportionation by loading Lewis acidic nickel species on ZSM-5 zeolite. Mol. Catal. 435, 110–117 (2017)

    Article  CAS  Google Scholar 

  15. J. Li, M. Liu, X. Guo, S. Xu, Y. Wei, Z. Liu, C. Song, Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination–realumination process: a Superior MTP Catalyst. ACS Appl. Mater. Interfaces. 9(31), 26096–26106 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. H. Chen, Y. Wang, C. Sun, F. Gao, L. Sun, C. Wang, Z. Wang, X. Wang, Aggregates of nano-sized ZSM-5 crystals synthesized with template-free and alkali-treated seeds for improving the catalytic performance in MTP reaction. Catal Commun. 100, 107–111 (2017)

    Article  CAS  Google Scholar 

  17. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature. 461, 246–249 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. L.H. Chen, M.H. Sun, Z. Wang, W. Yang, Z. Xie, B.L. Su, Hierarchically structured zeolites: from design to application. Chem. Rev. 120(20), 11194–11294 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. H.S. Kamaluddin, X. Gong, P. Ma, K. Narasimharao, A.D. Chowdhury, M. Mokhtar, Influence of zeolite ZSM-5 synthesis protocols and physicochemical properties in the methanol-to-olefin process. Mater. Today Chem. 26, 101061 (2022)

    Article  Google Scholar 

  20. Y. Zhang, S. Wu, X. Xu, H. Jiang, Ethane aromatization and evolution of carbon deposits over nanosized and microsized Zn/ZSM-5 catalysts. Catal. Sci. Technol. 10(3), 835–843 (2020)

    Article  CAS  Google Scholar 

  21. X. Su, W. Zan, X. Bai, G. Wang, W. Wu, Synthesis of microscale and nanoscale ZSM-5 zeolites: effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance. Catal. Sci. Technol. 7(9), 1943–1952 (2017)

    Article  CAS  Google Scholar 

  22. W. Xia, K. Chen, A. Takahashi, X. Li, X. Mu, C. Han, L. Liu, I. Nakamura, T. Fujitani, Effects of particle size on catalytic conversion of ethanol to propylene over H-ZSM-5 catalysts—smaller is better. Catal Commun. 73, 27–33 (2016)

    Article  CAS  Google Scholar 

  23. M. Firoozi, M. Baghalha, M. Asadi, The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catal Commun. 10(12), 1582–1585 (2009)

    Article  CAS  Google Scholar 

  24. Q. Zhang, G. Chen, Y. Wang, M. Chen, G. Guo, J. Shi, J. Luo, J. Yu, High-quality single-crystalline MFI-Type nanozeolites: a facile synthetic strategy and MTP Catalytic studies. Chem. Mater. 30(8), 2750–2758 (2018)

    Article  CAS  Google Scholar 

  25. T. Fu, J. Chang, J. Shao, Z. Li, Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline. J. Energy Chem. 26(1), 139–146 (2017)

    Article  Google Scholar 

  26. J. Li, M. Liu, X. Guo, C. Dai, C. Song, Fluoride-mediated nano-sized high-silica ZSM-5 as an ultrastable catalyst for methanol conversion to propylene. J. Energy Chem. 27(4), 1225–1230 (2018)

    Article  Google Scholar 

  27. H. Dai, Y. Shen, T. Yang, C. Lee, D. Fu, A. Agarwal, T.T. Le, M. Tsapatsis, J.C. Palmer, B.M. Weckhuysen, P.J. Dauenhauer, X. Zou, J.D. Rimer, Finned zeolite catalysts. Nat. Mater. 19, 1074–1080 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. E. Koohsaryan, M. Anbia, Nanosized and hierarchical zeolites: a short review. Chin. J. Catal. 37(4), 447–467 (2016)

    Article  CAS  Google Scholar 

  29. S. Mintova, J.P. Gilson, V. Valtchev, Advances in nanosized zeolites. Nanoscale. 5(15), 6693–6703 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. C. Madsen, C.J.H. Jacobsen, Confined space synthesis. A Novel Route to Nanosized zeolites. Inorg. Chem. 39(11), 2279–2283 (2000)

    Article  PubMed  Google Scholar 

  31. T. Xue, Y.M. Wang, M.-Y. He, Facile synthesis of nano-sized NH4-ZSM-5 zeolites. Microporous Mesoporous Mater. 156, 29–35 (2012)

    Article  CAS  Google Scholar 

  32. Z. Qin, L. Lakiss, L. Tosheva, J.P. Gilson, A. Vicente, C. Fernandez, V. Valtchev, Comparative study of Nano-ZSM-5 catalysts synthesized in OH – and F – media. Adv. Funct. Mater. 24(2), 257–226 (2014)

    Article  CAS  Google Scholar 

  33. J. Aguado, D.P. Serrano, J.M. Escola, J.M. Rodríguez, Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals. Microporous Mesoporous Mater. 75(1–2), 41–49 (2004)

    Article  CAS  Google Scholar 

  34. A. Palcic, V.V. Ordomsky, Z. Qin, V. Georgieva, V. Valtchev, Tuning Zeolite Properties for a highly efficient synthesis of propylene from methanol. Chem. Eur. J. 24(50), 13136–13149 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. S. Kim, G. Park, M.H. Woo, G. Kwak, S.K. Kim, Control of hierarchical structure and Framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol Conversion. ACS Catal. 9(4), 2880–2892 (2019)

    Article  CAS  Google Scholar 

  36. L. Zhang, X. Wang, Y. Chen, Rapid synthesis of uniform nano-sized silicalite-1 zeolite crystals under atmospheric pressure without wastes discharge. Chem. Eng. J. 382, 112913 (2020)

    Article  Google Scholar 

  37. C. Feng, X. Su, W. Wang, S. Xu, B. Fan, Q. Xin, W. Wu, Facile synthesis of ultrafine nanosized ZSM-5 zeolite using a hydroxyl radical initiator for enhanced catalytic performance in the MTG reaction. Microporous Mesoporous Mater. 312, 110780 (2021)

    Article  CAS  Google Scholar 

  38. S.Y. Fang, A.S.T. Chiang, H.M. Kao, Increasing the Productivity of Colloidal Zeolite Beta by Posthydrolysis Evaporation. Ind. Eng. Chem. Res. 49(23), 12191–12196 (2010)

    Article  CAS  Google Scholar 

  39. D.E. Kuechl, A.I. Benin, L.M. Knight, H. Abrevaya, S.T. Wilson, W. Sinkler, T.M. Mezza, R.R. Willis, Multiple paths to nanocrystalline high silica beta zeolite. Microporous Mesoporous Mater. 127(1–2), 104–118 (2010)

    Article  CAS  Google Scholar 

  40. C. Zhang, Q. Wu, C. Lei, S. Han, Q. Zhu, S. Maurer, D. Dai, A.N. Parvulescu, U. Müller, X. Meng, F.S. Xiao, An efficient, rapid, and non-centrifugation synthesis of nanosized zeolites by accelerating the nucleation rate. J. Mater. Chem. A 6(42), 21156–21161 (2018)

    Article  CAS  Google Scholar 

  41. Y. Zheng, W. Ning, Q. Wang, X. Wei, X. Li, M. Pan, Hierarchical ZSM-5 zeolite using amino acid as template: avoiding phase separation and fabricating an ultra-small mesoporous structure. Microporous Mesoporous Mater. 355, 112578 (2023)

    Article  CAS  Google Scholar 

  42. M. Sugimoto, H. Katsuno, K. Takatsu, N. Kawata, Correlation between the crystal zize and catalytic properties of ZSM-5 zeolites. Zeolites. 7(6), 503–507 (1987)

    Article  CAS  Google Scholar 

  43. K.S. Triantafyllidis, L. Nalbandian, P.N. Trikalitis, A.K. Ladavos, T. Mavromoustakos, C.P. Nicolaides, Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Microporous Mesoporous Mater. 75(1–2), 89–100 (2004)

    Article  CAS  Google Scholar 

  44. K.J. Chao, T.C. Tasi, M.S. Chen, Kinetic studies on the formation of zeolite ZSM-5. J. Chem. SOC. Furuduy Trans. 1. 77(3), 547–555 (1981)

    Article  CAS  Google Scholar 

  45. M. Xing, L. Zhang, J. Cao, Y. Han, F. Wang, K. Hao, L. Huang, Z. Tao, X. Wen, Y. Yang, Y. Li, Impact of the aluminum species state on Al pairs formation in the ZSM-5 framework. Microporous Mesoporous Mater. 334, 111768 (2022)

    Article  Google Scholar 

  46. J. Zhan, Y. Wang, T. He, L. Sheng, B. Wu, Q. Liu, M. Jia, Y. Zhang, Nonionic polymer and amino acid-assisted synthesis of ZSM-5 nanocrystals and their catalytic application in alkylation of 2-methylnaphthalene, Dalton Transactions. Accepted Manuscr. (2024). https://doi.org/10.1039/D4DT00096J

    Article  Google Scholar 

  47. Z. Ma, T. Fu, Y. Wang, J. Shao, Q. Ma, C. Zhang, L. Cui, Z. Li, Silicalite-1 Derivational Desilication-Recrystallization to prepare Hollow Nano-ZSM-5 and highly Mesoporous Micro-ZSM-5 Catalyst for methanol to hydrocarbons. Ind. Eng. Chem. Res. 58, 2146–2158 (2019)

    Article  CAS  Google Scholar 

  48. Z. Chen, X. Liu, Y. Yu, Z. Tang, J. Wang, D. Liu, N. Fang, Y. Lin, Y. Liu, M. He, Gripper-like Silicon species for efficient synthesis of Crystalline metallosilicates with spatially homogeneous heteroatoms in the Framework. Chem. Mater. 33, 4988–5001 (2021)

    Article  CAS  Google Scholar 

  49. X. Chen, R. Jiang, Y. Gao, Z. Zhou, X. Wang, Synthesis of nano-ZSM-5 zeolite via a dry gel conversion crystallization process and its application in MTO reaction. CrystEngComm. 23(15), 2793–2800 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No 22076017).

Author information

Authors and Affiliations

Authors

Contributions

Cunmei Dong, Yingna Cui and Xinping Wang wrote the main manuscript text, Hongjiang Li measured SEM and TEM of the samples, Shenmin Li reviewed and revised the manuscript.

Corresponding authors

Correspondence to Yingna Cui or Xinping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Li, H., Li, S. et al. Tuning crystal size and inhibiting aggregation by adding guanidinoacetic acid in ZSM-5 zeolite synthesis for catalysing methanol-to-olefin reaction. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01615-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01615-7

Keywords

Navigation