Skip to main content

Advertisement

Log in

Evaluation of piperazine/MIL-101 sorbents for enhanced low-temperature CO2 removal

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In the present work, the metal-organic framework MIL-101(Cr) was modified by grafting with piperazine (Pz) in order to enhance the low-temperature CO2 adsorption characteristics. The effect of piperazine loading was studied by varying the percentage of piperazine (0%, 20%, 50%, and 80%). The adsorbent materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption-desorption, and thermogravimetric analysis (TGA). The characterization studies confirmed the successful incorporation of piperazine on MIL-101. The CO2 adsorption kinetics and adsorption isotherms model were investigated at three different temperatures (30 °C, 40 °C, and 50 °C) to better understand the behavior of CO2 adsorption on the synthesized adsorbents. It was found that 50%pz/MIL-101 can enhance CO2 capacity up to 67% compared to bare MIL-101. Furthermore, piperazine grafted on MIL-101 can increase the rate constant and improve the binding energy between CO2 molecules and the surface of adsorbents. The regenerability for CO2 adsorption of pz/MIL-101 had nearly no drop after eight adsorption-desorption cycles. Thus, the pz/MIL-101 provides an excellent opportunity to capture CO2 in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, Climate change 2021: the physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, In press, (2021). https://doi.org/10.1017/9781009157896

  2. J. Rocha, S. Oliveira, C.M. Viana, A.I. Ribeiro, Climate Change and its Impacts on Health, Environment, and Economy, One Health (Academic Press, Cambridge, 2022), pp.253–279

    Google Scholar 

  3. A. Modak, S. Jana, Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater. 276, 107–132 (2019). https://doi.org/10.1016/j.micromeso.2018.09.018

    Article  CAS  Google Scholar 

  4. S.J. Chen, M. Zhu, Y. Fu, Y.X. Huang, Z.C. Tao, W.L. Li, Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas. Appl. Energy. 191, 87–98 (2017). https://doi.org/10.1016/j.apenergy.2017.01.031

    Article  ADS  CAS  Google Scholar 

  5. M.J. Al-Marri, M.M. Khader, M. Tawfik, G. Qi, E.P. Giannelis, CO2 sorption kinetics of scaled-up polyethylenimine-functionalized mesoporous silica sorbent. Langmuir. 31, 3569–3576 (2015). https://doi.org/10.1021/acs.langmuir.5b00189

    Article  CAS  PubMed  Google Scholar 

  6. S. Janati, B. Aghel, M. Shadloo, The effect of alkanolamine mixtures on CO2 absorption efficiency in T-shaped microchannel. Environ. Technol. Innov. 24, 102006 (2021)

    Article  CAS  Google Scholar 

  7. C.H. Yu, C.H. Huang, C.S. Tan, A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012). https://doi.org/10.4209/aaqr.2012.05.0132

    Article  CAS  Google Scholar 

  8. W.T. Zheng, K. Huang, S. Dai, Solvothermal and template-free synthesis of N-functionalized mesoporous polymer for amine impregnation and CO2 adsorption. Microporous Mesoporous Mater. 290, 109653 (2019). https://doi.org/10.1016/j.micromeso.2019.109653

    Article  CAS  Google Scholar 

  9. A.A. Azmi, M.A.A. Aziz, Mesoporous adsorbent for CO2 capture application under mild condition: a review. J. Environ. Chem. Eng. 7, 103022 (2019). https://doi.org/10.1016/j.jece.2019.103022

    Article  CAS  Google Scholar 

  10. M. Mohamedali, D. Nath, H. Ibrahim, A. Henni, Review of recent developments in CO2 capture using solid materials: metal organic frameworks (MOFs). Greenh. Gases (2016). https://doi.org/10.5772/62275

    Article  Google Scholar 

  11. S.H. Lo, D. Senthil Raja, C.W. Chen, Y.H. Kang, J.J. Chen, C.H. Lin, Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(cr, Al, Ga) and MIL-101(cr). Dalt Trans. 45, 9565–9573 (2016). https://doi.org/10.1039/c6dt01282e

    Article  CAS  Google Scholar 

  12. A. Das, M. Choucair, P.D. Southon, J.A. Mason, M. Zhao, C.J. Kepert, A.T. Harris, D.M. D’Alessandro, Application of the piperazine-grafted CuBTTri metal-organic framework in postcombustion carbon dioxide capture. Microporous Mesoporous Mater. 174, 74–80 (2013). https://doi.org/10.1016/j.micromeso.2013.02.036

    Article  CAS  Google Scholar 

  13. H.W.B. Teo, A. Chakraborty, S. Kayal, Evaluation of CH4 and CO2 adsorption on HKUST-1 and MIL-101(cr) MOFs employing Monte Carlo simulation and comparison with experimental data. Appl. Therm. Eng. 110, 891–900 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.126

    Article  CAS  Google Scholar 

  14. Y. Yang, X. Xu, Y. Guo, C.D. Wood, Enhancing the CO2 capture efficiency of amines by microgel particles. Int. J. Greenh. Gas Control. 103, 103172 (2020). https://doi.org/10.1016/j.ijggc.2020.103172

    Article  CAS  Google Scholar 

  15. G. Rim, F. Kong, M. Song, C. Rosu, P. Priyadarshini, R. Lively, C. Jones, Sub-ambient temperature direct air capture of CO2 using amine-impregnated MIL-101(cr) enables ambient temperature CO2 recovery. JACS Au. 2, 380–393 (2022). https://doi.org/10.1021/jacsau.1c0041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Sabatino, F. Grimm, M. Gallucci, van G.J. Sint Annaland, M. Kramer, Gazzani, A comparative energy and costs assessment and optimization for direct air capture technologies. Joule. 5(8), 2047–2076 (2021)

    Article  CAS  Google Scholar 

  17. J.M. Park, G.-Y. Cha, D. Jo, K.H. Cho, J.W. Yoon, Y.K. Hwang et al., Amine and fluorine co-functionalized MIL-101(Cr) synthesized via a mixed-ligand strategy for CO2 capture under humid conditions. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.136476

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jones, R. Lively, P. Ryan, M. Realff, Development of novel materials for direct air capture of CO2: MIL-101(Cr)-amine sorbents evaluation under realistic direct air capture conditions (Final Report), 2023. https://doi.org/10.2172/1907464

  19. M. Mohamedali, A. Henni, H. Ibrahim, Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks. Microporous Mesoporous Mater. 284, 98–110 (2019). https://doi.org/10.1016/j.micromeso.2019.04.004

    Article  CAS  Google Scholar 

  20. R.A. Peralta et al., CO2 capture enhancement in InOF-1 via the bottleneck effect of confined ethanol. Chem. Commun. 52, 10273–10276 (2016)

    Article  CAS  Google Scholar 

  21. M.R. Gonzalez, J.H. Gonzalez-Estefan, H.A. Lara-García, P. Sanchez-Camacho, E.I. Basaldella, H. Pfeiffer, I.A. Ibarra, Separation of CO2 from CH4 and CO2 capture in the presence of water vapour in NOTT-400. New. J. Chem. 39, 2400–2403 (2015)

    Article  CAS  Google Scholar 

  22. E. Sanchez-Gonzalez, E. Gonzalez-Zamora, D. Martínez-Otero, V. Jancik, I.A. Ibarra, Bottleneck effect of N,Ndimethylformamide in InOF-1: increasing CO2 capture in porous coordination polymers. Inorg. Chem. 56(10), 5863–5872 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. E. Sánchez-González, P.G.M. Mileo, J. Raziel Álvarez, E. González-Zamora, G. Maurin, I.A. Ibarra, Confined methanol within InOF-1: CO2 capture enhancement. Dalton Trans. 46, 15208–15215 (2017)

    Article  PubMed  Google Scholar 

  24. G.A. González-Martínez, J.A. Zárate, A. Martínez, E. Sánchez-González, J.R. Álvarez, E. Lima, E. GonzálezZamora, I.A. Ibarra, Confinement of alcohols to enhance CO2 capture in MIL-53(Al). RSC Adv. 7, 24833 (2017)

    Article  ADS  Google Scholar 

  25. M. Sanchez-Serratos, P.A. Bayliss, R.A. Peralta, E. Gonzalez-Zamora, E. Lima, I.A. Ibarra, CO2 capture in the presence of water vapour in MIL53(Al). New. J. Chem. 40, 68 (2016)

    Article  CAS  Google Scholar 

  26. H.A. Lara-García, M.R. Gonzalez, J.H. Gonzalez-Estefan, P. Sanchez-Camacho, E. Lima, I.A. Ibarra, Removal of CO2 from CH4 and CO2 capture in the presence of H2O vapour in NOTT-401. Inorg. Chem. Front. 2, 442–447 (2015)

    Article  Google Scholar 

  27. S.M. Hosseini-Ardali, M. Hazrati-Kalbibaki, M. Fattahi, F. Lezsovits, Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy 211, 119035 (2020). https://doi.org/10.1016/j.energy.2020.119035

    Article  CAS  Google Scholar 

  28. S.A. Freeman, J. Davis, G.T. Rochelle, Degradation of aqueous piperazine in carbon dioxide capture. Int. J. Greenh. Gas Control. 4, 756–761 (2010). https://doi.org/10.1016/j.ijggc.2010.03.009

    Article  CAS  Google Scholar 

  29. S.A. Freeman, R. Dugas, D.H. Van Wagener, T. Nguyen, G.T. Rochelle, Carbon dioxide capture with concentrated, aqueous piperazine. Int. J. Greenh. Gas Control. 4, 119–124 (2010). https://doi.org/10.1016/j.ijggc.2009.10.008

    Article  CAS  Google Scholar 

  30. M. Vahidi, A.M. Rashidi, A. Tavasoli, Preparation of piperazine-grafted amine-functionalized UiO-66 metal organic framework and its application for CO2 over CH4 separation. J Iran. Chem Soc. 14, 2247–2253 (2017). https://doi.org/10.1007/s13738-017-1161-6

    Article  CAS  Google Scholar 

  31. S. Mukherjee, A.N. Akshay, Samanta, Amine-impregnated MCM-41 in post-combustion CO2 capture: synthesis, characterization, isotherm modelling. Adv. Powder Technol. 30, 3231–3240 (2019). https://doi.org/10.1016/j.apt.2019.09.032

    Article  CAS  Google Scholar 

  32. M. Rahimi, M. Vadi, Langmuir, Freundlich and Temkin adsorption isotherms of propranolol on multi-wall carbon nanotube. J. Mod. Drug Discov. Drug Deliv. Res. 2, 1–3 (2014)

    Google Scholar 

  33. C. Duran, D. Ozdes, A. Gundogdu, H. Senturk, Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J. Chem. Eng. Data. 56(5), 2136–2147 (2011). https://doi.org/10.1021/je101204j

    Article  CAS  Google Scholar 

  34. M. Mohamedali, H. Ibrahim, A. Henni, Imidazolium based ionic liquids confined into mesoporous silica MCM-41 and SBA-15 for carbon dioxide capture. Microporous Mesoporous Mater. 294, 109916 (2020). https://doi.org/10.1016/j.micromeso.2019.109916

    Article  CAS  Google Scholar 

  35. P.D. Du, H.T.M. Thanh, T.C. To, H.S. Thang, M.X. Tinh, T.N. Tuyen, T.T. Hoa, D.Q. Khieu, Metal-organic framework MIL-101: synthesis and photocatalytic degradation of remazol black B dye. J. Nanomater. (2019). https://doi.org/10.1155/2019/6061275

    Article  Google Scholar 

  36. D. Yin, C. Li, H. Ren, O. Shekhah, J. Liu, C. Liang, Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity. RSC Adv. 7, 1626–1633 (2017). https://doi.org/10.1039/c6ra25722d

    Article  ADS  CAS  Google Scholar 

  37. J. Osterrieth et al., How reproducible are surface areas calculated from the BET equation? Adv. Mater. 34, 2201502 (2022). https://doi.org/10.1002/adma.202201502

    Article  CAS  Google Scholar 

  38. H.M.A. Hassan, M.A. Betiha, S.K. Mohamed, E.A. El-Sharkawy, E.A. Ahmed, Stable and recyclable MIL-101(Cr)–ionic liquid based hybrid nanomaterials as heterogeneous catalyst. J. Mol. Liq. 236, 385–394 (2017). https://doi.org/10.1016/j.molliq.2017.04.034

    Article  CAS  Google Scholar 

  39. C. Chen, N. Feng, Q. Guo, Z. Li, X. Li, J. Ding, L. Wang, H. Wan, G. Guan, Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: synergistic effect between multiple active sites. J. Colloid Interface Sci. 521, 91–101 (2018). https://doi.org/10.1016/j.jcis.2018.03.029

    Article  ADS  CAS  PubMed  Google Scholar 

  40. C. Chen, N. Feng, Q. Guo, Z. Li, X. Li, J. Ding, L. Wang, H. Wan, G. Guan, Template-directed fabrication of MIL-101(cr)/mesoporous silica composite: layer-packed structure and enhanced performance for CO2 capture. J. Colloid Interface Sci. 513, 891–902 (2018). https://doi.org/10.1016/j.jcis.2017.12.014

    Article  ADS  CAS  PubMed  Google Scholar 

  41. W. ZHAO, W. HUANG, X. TAN, Synthesis and adsorption performance of MIL-101(cr)/active carbon composites on toluene. DEStech Trans. Eng. Technol. Res. 101, 404–409 (2018). https://doi.org/10.12783/dtetr/amee2018/25358

    Article  Google Scholar 

  42. M. Mohamedali, A. Henni, H. Ibrahim, Investigation of CO2 capture using acetate-based ionic liquids incorporated into exceptionally porous metal–organic frameworks. Adsorption. 25, 675–692 (2019). https://doi.org/10.1007/s10450-019-00073-x

    Article  CAS  Google Scholar 

  43. C. Gecgel, U.B. Simsek, B. Gozmen, M. Turabik, Comparison of MIL-101(fe) and amine-functionalized MIL-101(fe) as photocatalysts for the removal of imidacloprid in aqueous solution. J Iran. Chem Soc. 16, 1735–1748 (2019). https://doi.org/10.1007/s13738-019-01647-w

    Article  CAS  Google Scholar 

  44. N.A. Khan, Z. Hasan, S.H. Jhung, Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: remarkable adsorbents for the removal of benzothiophene from liquid fuel. Chem. Commun. 52, 2561–2564 (2016). https://doi.org/10.1039/c5cc08896h

    Article  CAS  Google Scholar 

  45. C.S. Transactions, M.K. Mishra, Fourier transform infrared spectrophotometry studies of chromium trioxide-phthalic acid complexes. Chem. Sci. Trans. 5, 770–774 (2016). https://doi.org/10.7598/cst2016.1260

    Article  CAS  Google Scholar 

  46. Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE J. 59, 215–228 (2012). https://doi.org/10.1002/aic

    Article  ADS  Google Scholar 

  47. T.A. Vu, G.H. Le, C.D. Dao, L.Q. Dang, K.T. Nguyen, P.T. Dang, H.T.K. Tran, Q.T. Duong, T.V. Nguyen, G.D. Lee, Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation. RSC Adv. 40, 41185–41194 (2014). https://doi.org/10.1039/c4ra06522k

    Article  ADS  CAS  Google Scholar 

  48. D. Sachdev, P.H. Maheshwari, A. Dubey, Piperazine functionalized mesoporous silica for selective and sensitive detection of ascorbic acid. J. Porous Mater. 23, 123–129 (2016). https://doi.org/10.1007/s10934-015-0061-3

    Article  CAS  Google Scholar 

  49. H. Suleman, A.S. Maulud, A. Syalsabila, M.Z. Shahid, P.L. Fosbøl, High-pressure experimental and theoretical study of CO2 solubility in aqueous blends of lysine salts with piperazine as new absorbents. Fluid Phase Equilib. 507, 112429 (2020). https://doi.org/10.1016/j.fluid.2019.112429

    Article  CAS  Google Scholar 

  50. J.H. Choe, D.W. Kang, M. Kang, H. Kim, J.R. Park, D.W. Kim, C.S. Hong, Revealing an unusual temperature-dependent CO2 adsorption trend and selective CO2 uptake over water vapors in a polyamine-appended metal-organic framework. Mater. Chem. Front. 3, 2759–2767 (2019). https://doi.org/10.1039/c9qm00581a

    Article  CAS  Google Scholar 

  51. E. Inam, U.J. Etim, E.G. Akpabio, S.A. Umoren, Process optimization for the application of carbon from plantain peels in dye abstraction. J. Taibah Univ. Sci. 11, 173–185 (2017). https://doi.org/10.1016/j.jtusci.2016.01.003

    Article  Google Scholar 

  52. K.A.M. Said, N.Z. Ismail, R.L. Jama’in, N.A.M. Alipah, N.M. Sutan, G.G. Gadung, R. Baini, N.S.A. Zauzi, Application of Freundlich and Temkin isotherm to study the removal of pb(II) via adsorption on activated carbon equipped polysulfone membrane. Int. J. Eng. Technol. 7, 91–93 (2018). https://doi.org/10.14419/ijet.v7i3.18.16683

    Article  Google Scholar 

  53. M.T. Amin, A.A. Alazba, M. Shafiq, Adsorptive removal of reactive black 5 from wastewater using bentonite clay: Isotherms, kinetics, and thermodynamics. Sustain. 7, 15302–15318 (2015). https://doi.org/10.3390/su71115302

    Article  CAS  Google Scholar 

  54. A.O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 3, 38–45 (2012). https://doi.org/10.9790/5736-0313845

    Article  CAS  Google Scholar 

  55. S. Pourebrahimi, M. Kazemeini, L. Vafajoo, Embedding graphene nanoplates into MIL-101(cr) pores: synthesis, characterization, and CO2 adsorption studies. Ind. Eng. Chem. Res. 56, 3895–3904 (2017). https://doi.org/10.1021/acs.iecr.6b04538

    Article  CAS  Google Scholar 

  56. V.K. Singh, E.A. Kumar, Comparative studies on CO2 adsorption kinetics by solid adsorbents. Energy Procedia. 90, 316–325 (2016). https://doi.org/10.1016/j.egypro.2016.11.199

    Article  CAS  Google Scholar 

  57. S.M. Hong, E. Jang, A.D. Dysart, V.G. Pol, K.B. Lee, CO2 capture in the sustainable wheat-derived activated microporous carbon compartments. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep34590

    Article  CAS  Google Scholar 

  58. G. Song, X. Zhu, R. Chen, Q. Liao, Y.D. Ding, L. Chen, An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem. Eng. J. 283, 175–183 (2016). https://doi.org/10.1016/j.cej.2015.07.055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support through the Canadian Queen Elizabeth II Diamond Jubilee Scholarships (QES), Canada Foundation for Innovation (CFI JELF: 37758), Natrual Sciences and Engineering Research Council of Canada (NSERC DG: RGPIN-2018-03955), and the VPR Curiosity Fund and Engineering ROF at the University of Regina. The authors also extend their gratitude to the Clean Energy Technologies Research Institute (CETRI) for allowing access to their research infrastructure. The views expressed herein are those of the writers and not necessarily those of our research and funding partners.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HI; methodology: RY, MM, HI; software: RY; validation: RY, FA; formal analysis: RY, MM; investigation: RY, FA; resources: HI; data curation: RY, FA, HI; writing—original draft preparation: RY, MM; writing—review and editing: FA, HI; visualization: RY, MM, FA; supervision: HI; project administration: HI; funding acquisition: HI. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hussameldin Ibrahim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1100.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaisamlee, R., Ali, F.M., Mohamedali, M. et al. Evaluation of piperazine/MIL-101 sorbents for enhanced low-temperature CO2 removal. J Porous Mater 31, 237–249 (2024). https://doi.org/10.1007/s10934-023-01512-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01512-5

Keywords

Navigation