Skip to main content
Log in

A facile route to fabricate anisotropic and flexible carbon aerogels from pineapple leaf for oil spills and solvent removal

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Converting agricultural residues into valuable materials has been recently a hot trend because biomass is a cellulose-rich source to efficiently manufacture cellulose-based materials. In this study, sponge-like carbon aerogels from biomass-derived cellulose are successfully fabricated using a rapid, simple, and cost-effective method without using harmful and toxic ingredients. The synthesized carbon aerogels are promising candidates for oil spill removal due to their hydrophobicity and oleophilicity. The aerogels producing from pineapple leaf fibers with the usage of polyamidoamine epichlorohydrin (PAE) as a cross-linker are pyrolyzed at 750 °C to form an ultra-light (density of 0.0088 g cm−3), super porous (99.68%) and flexible carbon aerogels. The as-fabricated aerogels show a fast adsorption rate (less than 30 s) and preeminent adsorption capability to various types of oil, in particular for the pump oil, at approx. 130 g g−1. Carbon aerogels with 5 wt% of PAE compared to dry microfibrilled cellulose (MFC) weight exhibit the highest capacity of oil adsorption by the value of 113 g g−1 for olive oil. A plinth freezing by a copper block results in vertically-aligned aerogels having oil adsorption capacity increased by 25% compared with the non-directional ones. Additionally, the adsorption capacity of the material maintains 75% of the initial value after 7 adsorption–desorption cycles. Therefore, our high-performance aerogels from affordable resources show great potential in treating oil spills effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. A.A. Al-Majed, A.R. Adebayo, M.E. Hossain, A sustainable approach to controlling oil spills. J. Environ. Manage. 113, 213–227 (2012). https://doi.org/10.1016/j.jenvman.2012.07.034

    Article  PubMed  Google Scholar 

  2. J. Vilcáez, L. Li, and S. S. Hubbard, A new model for the biodegradation kinetics of oil droplets: application to the Deepwater Horizon oil spill in the Gulf of Mexico. (2013). [Online]. Available: http://www.geochemicaltransactions.com/content/14/1/4. Accessed 29 Oct 2022

  3. Z.Y. Wu et al., Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions. Sci. Rep. (2014). https://doi.org/10.1038/srep04079

    Article  PubMed  PubMed Central  Google Scholar 

  4. Y. Wang, L. Zhu, F. Zhu, L. You, X. Shen, S. Li, Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J. Taiwan Inst. Chem. Eng. 78, 351–358 (2017). https://doi.org/10.1016/j.jtice.2017.06.037

    Article  CAS  Google Scholar 

  5. S.T. Nguyen et al., Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 52(51), 18386–18391 (2013). https://doi.org/10.1021/ie4032567

    Article  CAS  Google Scholar 

  6. H. Yang, J. Sun, Y. Zhang, Q. Xue, S. Xia, Preparation of hydrophobic carbon aerogel using cellulose extracted from luffa sponge for adsorption of diesel oil. Ceram. Int. 47(23), 33827–33834 (2021). https://doi.org/10.1016/j.ceramint.2021.08.294

    Article  CAS  Google Scholar 

  7. Y. Meng, T.M. Young, P. Liu, C.I. Contescu, B. Huang, S. Wang, Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22(1), 435–447 (2015). https://doi.org/10.1007/s10570-014-0519-5

    Article  CAS  Google Scholar 

  8. H. Chen, X. Wang, J. Li, X. Wang, Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. J. Mater. Chem. A 3(11), 6073–6081 (2015). https://doi.org/10.1039/c5ta00299k

    Article  CAS  Google Scholar 

  9. D. Peng, Z. Lan, C. Guo, C. Yang, Z. Dang, Application of cellulase for the modification of corn stalk: Leading to oil sorption. Bioresour. Technol. 137, 414–418 (2013). https://doi.org/10.1016/j.biortech.2013.03.178

    Article  CAS  PubMed  Google Scholar 

  10. L. Hu, R. He, H. Lei, D. Fang, Carbon aerogel for insulation applications: a review. Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2505-5

    Article  Google Scholar 

  11. J.H. Lee, S.J. Park, Recent advances in preparations and applications of carbon aerogels: a review. Carbon 163, 1–18 (2020). https://doi.org/10.1016/j.carbon.2020.02.073

    Article  CAS  Google Scholar 

  12. L.V. Petridis, N.C. Kokkinos, A.C. Mitropoulos, G.Z. Kyzas, Graphene aerogels for oil absorption. Int. Sci. Technol. (2019). https://doi.org/10.1016/B978-0-12-814178-6.00008-X

    Article  Google Scholar 

  13. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem.—Int. Ed. 51(45), 11371–11375 (2012). https://doi.org/10.1002/anie.201206554

    Article  CAS  Google Scholar 

  14. S.V. Thakkar et al., Performance of oil sorbents based on reduced graphene oxide-silica composite aerogels. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2019.103632

    Article  Google Scholar 

  15. W. Wan et al., Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ. Sci. Nano 3(1), 107–113 (2016). https://doi.org/10.1039/c5en00125k

    Article  CAS  Google Scholar 

  16. H. Khoshnevis et al., Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning. Chem. Phys. Lett. (2018). https://doi.org/10.1016/j.cplett.2018.01.001

    Article  Google Scholar 

  17. X. Gui et al., Carbon nanotube sponges. Adv. Mater. 22(5), 617–621 (2010). https://doi.org/10.1002/adma.200902986

    Article  CAS  PubMed  Google Scholar 

  18. S. Wang et al., An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J. Mater. Chem. A 3(16), 8772–8781 (2015). https://doi.org/10.1039/c4ta07057g

    Article  CAS  Google Scholar 

  19. P. Dubey, V. Shrivastav, P.H. Maheshwari, S. Sundriyal, Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: challenges and opportunities. Carbon 170, 1–29 (2020). https://doi.org/10.1016/j.carbon.2020.07.056

    Article  CAS  Google Scholar 

  20. S. Lee, M.J. Jeong, K.Y. Kang, Preparation of cellulose aerogels as a nano-biomaterial from lignocellulosic biomass. J. Korean Phys. Soc. 67(4), 738–741 (2015). https://doi.org/10.3938/JKPS.67.738

    Article  CAS  Google Scholar 

  21. Y.Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain. Chem. Eng. 2(6), 1492–1497 (2014). https://doi.org/10.1021/sc500161b

    Article  CAS  Google Scholar 

  22. L.Y. Long, Y.X. Weng, Y.Z. Wang, Cellulose aerogels: synthesis, applications, and prospects. Polymers (2018). https://doi.org/10.3390/polym10060623

    Article  PubMed  PubMed Central  Google Scholar 

  23. N. Lavoine, L. Bergström, Nanocellulose-based foams and aerogels: processing, properties, and applications. J. Mater. Chem. A 5(31), 16105–16117 (2017). https://doi.org/10.1039/c7ta02807e

    Article  CAS  Google Scholar 

  24. L. Zhou, S. Zhai, Y. Chen, Z. Xu, Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents. Polymers (Basel) (2019). https://doi.org/10.3390/polym11040712

    Article  PubMed  PubMed Central  Google Scholar 

  25. L. Zhou, Z. Xu, Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121804

    Article  PubMed  Google Scholar 

  26. L.N. Tan, N.C.T. Nguyen, A.M.H. Trinh, N.H.N. Do, K.A. Le, P.K. Le, Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(VI) removal. Sep. Purif. Technol. (2023). https://doi.org/10.1016/j.seppur.2022.122415

    Article  Google Scholar 

  27. N.H.N. Do et al., Heat and sound insulation applications of pineapple aerogels from pineapple waste. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122267

    Article  Google Scholar 

  28. M.T. Tuyet Phan, L.N. Pham, L.H. Nguyen, L.P. To, Investigation on synthesis of hydrogel starting from vietnamese pineapple leaf waste-derived carboxymethylcellulose. J. Anal. Methods Chem. (2021). https://doi.org/10.1155/2021/6639964

    Article  PubMed  PubMed Central  Google Scholar 

  29. N.H.N. Do et al., Advanced fabrication and application of pineapple aerogels from agricultural waste. Mater. Technol. 35(11–12), 807–814 (2020). https://doi.org/10.1080/10667857.2019.1688537

    Article  CAS  Google Scholar 

  30. M. Asim et al., A review on pineapple leaves fibre and its composites. J. Polym. Sci. Int. (2015). https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  31. C.H. Dong, Z. Lv, L. Zhang, H.J. Shen, N.N. Li, P. Zhu, Structure and characteristics of pineapple leaf fibers obtained from pineapple leaves. Adv. Mater. Res. (2014). https://doi.org/10.4028/www.scientific.net/AMR.998-999.316

    Article  Google Scholar 

  32. W. Yang, H. Bian, L. Jiao, W. Wu, Y. Deng, H. Dai, High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film: via cross-linking with poly-amide epichlorohydrin resin. RSC Adv. 7(50), 31567–31573 (2017). https://doi.org/10.1039/c7ra05009g

    Article  CAS  Google Scholar 

  33. L. Nguyen et al., Microfibrillated cellulose from pineapple leaves for synthesizing novel thermal insulation aerogels. Chem. Eng. Trans. 97, 61–66 (2022). https://doi.org/10.3303/CET2297011

    Article  Google Scholar 

  34. M. Dilamian, B. Noroozi, Rice straw agri-waste for water pollutant adsorption: relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr. Polym. (2021). https://doi.org/10.1016/j.carbpol.2020.117016

    Article  PubMed  Google Scholar 

  35. H. Cheng, B. Gu, M.P. Pennefather, T.X. Nguyen, N. Phan-Thien, H.M. Duong, Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des. 130, 452–458 (2017). https://doi.org/10.1016/j.matdes.2017.05.082

    Article  CAS  Google Scholar 

  36. X. Zhang, H. Wang, Z. Cai, N. Yan, M. Liu, Y. Yu, Highly compressible and hydrophobic anisotropic aerogels for selective oil/organic solvent absorption. ACS Sustain. Chem. Eng. 7(1), 332–340 (2019). https://doi.org/10.1021/acssuschemeng.8b03554

    Article  CAS  Google Scholar 

  37. H. Wang et al., A universal aqueous conductive binder for flexible electrodes. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102284

    Article  PubMed  PubMed Central  Google Scholar 

  38. S. Sharma, Y. Deng, Dual mechanism of dry strength improvement of cellulose nanofibril films by polyamide-epichlorohydrin resin cross-linking. Ind. Eng. Chem. Res. 55(44), 11467–11474 (2016). https://doi.org/10.1021/acs.iecr.6b02910

    Article  CAS  Google Scholar 

  39. X. Sun, L. Bai, J. Li, L. Huang, H. Sun, X. Gao, Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments. Carbon 182, 11–22 (2021). https://doi.org/10.1016/j.carbon.2021.05.047

    Article  CAS  Google Scholar 

  40. Z. He, X. Zhang, W. Batchelor, Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Adv. 6(26), 21435–21438 (2016). https://doi.org/10.1039/c5ra27413c

    Article  CAS  Google Scholar 

  41. A. Mulyadi, Z. Zhang, Y. Deng, Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl. Mater. Interfaces 8(4), 2732–2740 (2016). https://doi.org/10.1021/acsami.5b10985

    Article  CAS  PubMed  Google Scholar 

  42. S. Yang, L. Chen, L. Mu, B. Hao, P.C. Ma, Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances. RSC Adv. 5(48), 38470–38478 (2015). https://doi.org/10.1039/c5ra03701h

    Article  CAS  Google Scholar 

  43. Q. Ma, Y. Liu, Z. Dong, J. Wang, X. Hou, Hydrophobic and nanoporous chitosan-silica composite aerogels for oil absorption. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41770

    Article  Google Scholar 

  44. S. Han, Q. Sun, H. Zheng, J. Li, C. Jin, Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr. Polym. 136, 95–100 (2016). https://doi.org/10.1016/j.carbpol.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  45. S.F. Chin, A.N. Binti Romainor, S.C. Pang, Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater. Lett. 115, 241–243 (2014). https://doi.org/10.1016/j.matlet.2013.10.061

    Article  CAS  Google Scholar 

  46. Y. Liu, Y. Peng, T. Zhang, F. Qiu, D. Yuan, Superhydrophobic, ultralight and flexible biomass carbon aerogels derived from sisal fibers for highly efficient oil–water separation. Cellulose 25(5), 3067–3078 (2018). https://doi.org/10.1007/s10570-018-1774-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

CKTP: methodology, characterization, investigation, data collection, data analysis, writing—original draft; TKD: characterization, investigation, visualization; NHND: validation, writing—review & editing; LTN: validation, writing—review & editing, PTM: data curation, validation; KAL: data curation, writing—review & editing; PKL: resources, validation, project administration.

Corresponding author

Correspondence to Phung K. Le.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, C.K.T., Duy, T.K., Do, N.H.N. et al. A facile route to fabricate anisotropic and flexible carbon aerogels from pineapple leaf for oil spills and solvent removal. J Porous Mater 30, 1911–1923 (2023). https://doi.org/10.1007/s10934-023-01474-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01474-8

Keywords

Navigation