Skip to main content
Log in

Magnetic hydroxyethyl cellulose spheres with efficient congo red removal

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Ecofriendly adsorbent materials for the rapid and efficient removal of pollutant dyes are highly desired on account of concerns about environmental pollution and human health. Herein, novel magnetic HC/Fe3O4 spherical materials have been constructed via crosslinking hydroxyethyl cellulose (HC) by poly(ethylene glycol) diglycidyl ether (PGDE) followed by the introduction of magnetic Fe3O4 by a facile and effective strategy developed in this work. The morphology, structure and magnetic behavior, point of zero-charge (pHzpc) and Brunauer-Emmet-Teller (BET) of the spherical materials have been systematically investigated. Further, the spherical materials were utilized to remove congo red (CR-SO3Na) from aqueous solution under varying adsorption conditions. Meanwhile, the adsorption kinetics, thermodynamics and isothermics have been achieved to explore the adsorption process and possible adsorption mechanism of CR-SO3Na by the spherical materials. The materials show not only an efficient capacity of CR-SO3Na removal from aqueous solution, but also a sufficient magnetic property of the recovery of the materials from aqueous solution after adsorption. The spherical materials have great potential to be used as efficient adsorbents for the removal of dye-containing effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Helmiyati, N. Fitriana, M.L. Chaerani, F.W. Dini, Green hybrid photocatalyst containing cellulose and γ–Fe2O3–ZrO2 heterojunction for improved visible-light driven degradation of congo red. Opt. Mater. 124, 111982 (2022). https://doi.org/10.1016/j.optmat.2022.111982

    Article  CAS  Google Scholar 

  2. S. Debnath, N. Ballav, A. Maity, K. Pillay, Development of a polyaniline-lignocellulose composite for optimal adsorption of congo red. Int. J. Biol. Macromol. 75, 199–209 (2015). https://doi.org/10.1016/j.ijbiomac.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  3. C.W. Luo, D.J. Wu, L. Gan, X.X. Cheng, Q. Ma, F.X. Tan, J. Gao, W.W. Zhou, S.S. Wang, F.M. Zhang, J. Ma, Oxidation of congo red by thermally activated persulfate process: kinetics and transformation pathway. Sep. Purif. Technol. 244, 116839 (2020). https://doi.org/10.1016/j.seppur.2020.116839

    Article  CAS  Google Scholar 

  4. R.K. Sharma, R. Kumar, A.P. Singh, Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers. Sep. Purif. Technol. 209, 684–697 (2019). https://doi.org/10.1016/j.seppur.2018.09.011

    Article  CAS  Google Scholar 

  5. M.E. González-López, C.M. Laureano-Anzaldo, A.A. Pérez-Fonseca, C. Gómez, J.R. Robledo-Ortíz, Congo red adsorption with cellulose-graphene nanoplatelets beads by differential column batch reactor. J. Environ. Chem. Eng. 9, 105029 (2021). https://doi.org/10.1016/j.jece.2021.105029

    Article  CAS  Google Scholar 

  6. A. Afkhami, R. Moosavi, Adsorptive removal of congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 174, 398–403 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.066

    Article  CAS  PubMed  Google Scholar 

  7. Q. Shi, S. Zhang, J. Ge, J. Wei, X. Meng, Lead immobilization by phosphate in the presence of iron oxides: adsorption versus precipitation. Water Res. 179, 115853 (2020). https://doi.org/10.1016/j.watres.2020.115853

    Article  CAS  PubMed  Google Scholar 

  8. X. Jing, J. Yuan, D. Cai, B. Li, D. Hu, J. Li, Concentrating and recycling of high-concentration printing and dyeing wastewater by a disctube reverse osmosis-fenton oxidation/low temperature crystallization process. Sep. Purif. Technol. 266, 118583 (2021). https://doi.org/10.1016/j.seppur.2021.118583

    Article  CAS  Google Scholar 

  9. L. Saya, D. Gautam, V. Malik, W.R. Singh, S. Hooda, Natural polysaccharide based graphene oxide nanocomposites for removal of dyes from wastewater: a review. J. Chem. Eng. Data 66, 11–37 (2020). https://doi.org/10.1021/acs.jced.0c00743

    Article  CAS  Google Scholar 

  10. K. Hirosawa, K. Fujii, K. Hashimoto, M. Shibayama, Solvated structure of cellulose in a phosphonate-based ionic liquid. Macromolecules 50, 6509–6517 (2017). https://doi.org/10.1021/acs.macromol.7b01138

    Article  CAS  Google Scholar 

  11. A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, The path forward for biofuels and biomaterials. Science 311, 484–489 (2006). https://doi.org/10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  12. H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose. Chem. Soc. Rev. 41, 1519–1537 (2012). https://doi.org/10.1039/C2CS15311D

    Article  CAS  PubMed  Google Scholar 

  13. H. Hosseini, A. Zirakjou, D.J. McClements, V. Goodarzi, W.H. Chen, Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. J. Hazard. Mater. 421, 126752 (2022). https://doi.org/10.1016/j.jhazmat.2021.126752

    Article  CAS  PubMed  Google Scholar 

  14. Y. Wang, L. Zhao, H. Peng, J. Wu, Z. Liu, X. Guo, Removal of anionic dyes from aqueous solutions by cellulose-based adsorbents: equilibrium, kinetics, and thermodynamics. J. Chem. Eng. Data 61, 3266–3276 (2016). https://doi.org/10.1021/acs.jced.6b00340

    Article  CAS  Google Scholar 

  15. A. Pei, N. Butchosa, L.A. Berglund, Q. Zhou, Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter. 9, 2047–2055 (2013). https://doi.org/10.1039/C2SM27344F

    Article  CAS  Google Scholar 

  16. K.Y. Chong, C.H. Chia, S. Zakaria, M.S. Sajab, S.W. Chook, P.S. Khiew, CaCO3-decorated cellulose aerogel for removal of congo red from aqueous solution. Cellulose 22, 2683–2691 (2015). https://doi.org/10.1007/s10570-015-0675-2

    Article  CAS  Google Scholar 

  17. J. Zhang, C. Ma, H. Li, X. Wang, F. Ning, M. Kang, Z. Qiu, Polyethyleneimine modified magnetic microcrystalline cellulose for effective removal of congo red: adsorption properties and mechanisms. Fiber. Polym. 22, 1580–1593 (2021). https://doi.org/10.1007/s12221-021-0543-7

    Article  CAS  Google Scholar 

  18. C.M. Laureano-Anzaldo, N.B. Haro-Mares, J.C. Meza-Contreras, J.R. Robledo-Ortíz, R. Manríquez-González, Chemical modification of cellulose with zwitterion moieties used in the uptake of red congo dye from aqueous media. Cellulose 26, 9207–9227 (2019). https://doi.org/10.1007/s10570-019-02717-1

    Article  CAS  Google Scholar 

  19. D. Ranjbar, M. Raeiszadeh, L. Lewis, M.J. MacLachlan, S.G. Hatzikiriakos, Adsorptive removal of congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation. Cellulose 27, 3211–3232 (2020). https://doi.org/10.1007/s10570-020-03021-z

    Article  CAS  Google Scholar 

  20. J. Zhao, Z. Lu, X. He, X. Zhang, Q. Li, T. Xia, W. Zhang, C. Lu, Fabrication and characterization of highly porous Fe(OH)3@ cellulose hybrid fibers for effective removal of congo red from contaminated water. ACS Sustain. Chem. Eng. 5, 7723–7732 (2017). https://doi.org/10.1021/acssuschemeng.7b01175

    Article  CAS  Google Scholar 

  21. Y. Fang, H. He, K. Dong, J. Yang, Z. Qin, Preparation and adsorption properties of hyperbranched polyethyleneimine-cellulose nanofiber aerogel. New J. Chem. 46, 5954–5965 (2022). https://doi.org/10.1039/D1NJ06156A

    Article  CAS  Google Scholar 

  22. H. Tu, Y. Yu, J. Chen, X. Shi, J. Zhou, H. Deng, Y. Du, Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polym. Chem. 8, 2913–2921 (2017). https://doi.org/10.1039/C7PY00223H

    Article  CAS  Google Scholar 

  23. L. Zhang, D. Zhao, Y. Lu, J. Chen, H. Li, J. Xie, Y. Xu, H.K. Yuan, X.J. Liu, X.Y. Zhu, J. Lu, A Graphene oxide modified cellulose nanocrystal/PNIPAAm IPN hydrogel for the adsorption of congo red and methylene blue. New J. Chem. 45, 16679–16688 (2021). https://doi.org/10.1039/D1NJ01969D

    Article  CAS  Google Scholar 

  24. U.J. Kim, D. Kim, J. You, J.W. Choi, S. Kimura, M. Wada, Preparation of cellulose-chitosan foams using an aqueous lithium bromide solution and their adsorption ability for congo red. Cellulose 25, 2615–2628 (2018). https://doi.org/10.1007/s10570-018-1742-2

    Article  CAS  Google Scholar 

  25. Q. Xie, Y. Zou, Y. Wang, H. Wang, Z. Du, X. Cheng, Mechanically robust sodium alginate/cellulose nanofibers/polyethyleneimine composite aerogel for effective removal of hexavalent chromium and anionic dyes. Polym. Eng. Sci. 62, 1927–1940 (2022). https://doi.org/10.1002/pen.25976

    Article  CAS  Google Scholar 

  26. Y. Song, S. Zhou, H. Li, F. Xie, H. Yang, Z. Yuan, W. Li, Controllable synthesis of cellulose/methylene bisacrylamide aerogels for enhanced adsorption performance. J. Appl. Polym. Sci. 138, 50204 (2021). https://doi.org/10.1002/app.50204

    Article  CAS  Google Scholar 

  27. A. Afzal, Z. Khaliq, S. Ahmad, F. Ahmad, A. Noor, M.B. Qadir, Development and characterization of biodegradable composite film. Environ. Technol. Inno. 23, 101664 (2021). https://doi.org/10.1016/j.eti.2021.101664

    Article  CAS  Google Scholar 

  28. I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010). https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  29. A. Xu, Y. Wang, J. Gao, J. Wang, Facile fabrication of a homogeneous cellulose/polylactic acid composite film with improved biocompatibility, biodegradability and mechanical properties. Green Chem. 21, 4449–4456 (2019). https://doi.org/10.1039/C9GC01918A

    Article  CAS  Google Scholar 

  30. A.R. Xu, L. Chen, J. Wang, Functionalized imidazalium carboxylates for enhancing practical applicability in cellulose processing. Macromolecules 51, 4158–4166 (2018). https://doi.org/10.1021/acs.macromol.8b00724

    Article  CAS  Google Scholar 

  31. M. Verma, I. Tyagi, V. Kumar, S. Goel, D. Vaya, H. Kim, Fabrication of GO–MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: kinetics, isotherm, and reusability. J. Environ. Chem. Eng. 9, 106045 (2021). https://doi.org/10.1016/j.jece.2021.106045

    Article  CAS  Google Scholar 

  32. M.T. Al-Shemy, A. Al-Sayed, S. Dacrory, Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: kinetics and thermodynamics study. Sep. Purif. Technol. 290, 120825 (2022). https://doi.org/10.1016/j.seppur.2022.120825

    Article  CAS  Google Scholar 

  33. C.F. Ding, Y. Li, Y. Wang, J. Li, Y. Sun, Y. Lin, W. Sun, C. Luo, Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Bio. Macromol. 107, 957–964 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.075

    Article  CAS  Google Scholar 

  34. I. Jilal, S. El Barkany, Z. Bahari, O. Sundman, A. El Idrissi, M. Abou-Salama, A. Romane, C. Zannagui, H. Amhamdi, New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: synthesis, characterization and application for Pb (II) and Cu (II) removal. Carbohyd. Polym. 180, 156–167 (2018). https://doi.org/10.1016/j.carbpol.2017.10.012

    Article  CAS  Google Scholar 

  35. I.S. Chronakis, M. Egermayer, L. Piculell, Thermoreversible gels of hydrophobically modified hydroxyethyl cellulose cross-linked by amylose. Macromolecules 35, 4113–4122 (2002). https://doi.org/10.1021/ma011980q

    Article  CAS  Google Scholar 

  36. M. Sultan, Z.A. Nagieb, H.M. El-Masry, G.M. Taha, Physically-crosslinked hydroxyethyl cellulose-g-poly (acrylic acid-co-acrylamide)-Fe3+/silver nanoparticles for water disinfection and enhanced adsorption of basic methylene blue dye. Int. J. Biol. Macromol. 196, 180–193 (2022). https://doi.org/10.1016/j.ijbiomac.2021.11.109

    Article  CAS  PubMed  Google Scholar 

  37. S. Huang, L. Wu, T. Li, D. Xu, X. Lin, C. Wu, Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. Int. J. Biol. Macromol. 137, 939–947 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.234

    Article  CAS  PubMed  Google Scholar 

  38. Z.Z. Gao, N. Qi, W.J. Chen, H. Zhao, Construction of hydroxyethyl cellulose/silica/graphitic carbon nitride solid foam for adsorption and photocatalytic degradation of dyes. Arab. J. Chem. 15, 104105 (2022). https://doi.org/10.1016/j.arabjc.2022.104105

    Article  CAS  Google Scholar 

  39. I. Ayouch, I. Kassem, Z. Kassab, I. Barrak, A. Barhoun, J. Jacquemin, K. Draoui, M. El Achaby, Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surf. Interfaces 24, 101124 (2021). https://doi.org/10.1016/j.surfin.2021.101124

    Article  CAS  Google Scholar 

  40. S. Jana, S.S. Pradhan, T. Tripathy, Poly (N, N-dimethylacrylamide-co-acrylamide) grafted hydroxyethyl cellulose hydrogel: a useful congo red dye remover. J. Polym. Environ. 26, 2730–2747 (2018). https://doi.org/10.1007/s10924-017-1168-1

    Article  CAS  Google Scholar 

  41. P. Sirajudheen, M.R. Nikitha, P. Karthikeyan, S. Meenakshi, Perceptive removal of toxic azo dyes from water using magnetic Fe3O4 reinforced graphene oxide–carboxymethyl cellulose recyclable composite: adsorption investigation of parametric studies and their mechanisms. Surf. Interface 21, 100648 (2020). https://doi.org/10.1016/j.surfin.2020.100648

    Article  CAS  Google Scholar 

  42. M.E. Mahmoud, R.M. El-Sharkawy, G.A. Ibrahim, A novel bionanocomposite from doped lipase enzyme into magnetic graphene oxide-immobilized-cellulose for efficient removal of methylene blue and malachite green dyes. J. Mol. Liq. 368, 120676 (2022). https://doi.org/10.1016/j.molliq.2022.120676

    Article  CAS  Google Scholar 

  43. Y. Fu, Y. Xu, B. Lou, X. Qin, L. Zhang, H. Yuan, L.J. Zhang, J. Lu, Magnetically recyclable core-shell MOF nanoparticles of Fe3O4@PDA@ UIO-66-NH2 grafted by organic acids for intensified cationic dye adsorption. New J. Chem. 46, 11071–11081 (2022). https://doi.org/10.1039/D2NJ01748B

    Article  CAS  Google Scholar 

  44. A.R. Xu, L. Chen, X. Guo, Z.H. Xiao, R.K. Liu, Biodegradable lignocellulosic porous materials: fabrication, characterization and its application in water processing. Int. J. Biol. Macromol. 115, 846–852 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.133

    Article  CAS  PubMed  Google Scholar 

  45. A.S. Eltaweil, G.S. Elgarhy, G.M. El-Subruiti, A.M. Omer, Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int. J. Biol. Macromol. 154, 307–318 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.122

    Article  CAS  PubMed  Google Scholar 

  46. H.L. Fan, L. Li, S.F. Zhou, Y.Z. Liu, Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption. Ceram. Int. 42, 4228–4237 (2016). https://doi.org/10.1016/j.ceramint.2015.11.098

    Article  CAS  Google Scholar 

  47. J. Deng, B. Lei, A. He, X. Zhang, L. Ma, S. Li, C. Zhao, Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J. Hazard. Mater. 263, 467–478 (2013). https://doi.org/10.1016/j.jhazmat.2013.09.065

    Article  CAS  PubMed  Google Scholar 

  48. Z. Wang, L. Song, Y. Wang, X.F. Zhang, J. Yao, Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. J. Phys. Chem. Solids 150, 109839 (2020). https://doi.org/10.1016/j.jpcs.2020.109839

    Article  CAS  Google Scholar 

  49. N. Chaukura, B.B. Mamba, S.B. Mishra, Conversion of post consumer waste polystyrene into a high value adsorbent and its sorptive properties for congo red removal from aqueous solution. J. Environ. Manag. 193, 280–289 (2017). https://doi.org/10.1016/j.jenvman.2017.02.023

    Article  CAS  Google Scholar 

  50. H. Dai, Y. Huang, H. Huang, Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 185, 1–11 (2018). https://doi.org/10.1016/j.carbpol.2017.12.073

    Article  CAS  PubMed  Google Scholar 

  51. Y. Chen, Y. Long, Q. Li, X. Chen, X. Xu, Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (ii). Int. J. Biol. Macromol. 126, 107–117 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.119

    Article  CAS  PubMed  Google Scholar 

  52. L.H. Ai, M. Li, L. Li, Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. J. Chem. Eng. Data 56, 3475–3483 (2011). https://doi.org/10.1021/je200536h

    Article  CAS  Google Scholar 

  53. C.A. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J. Hazard. Mater. 135, 232–241 (2006). https://doi.org/10.1016/j.jhazmat.2005.11.055

    Article  CAS  PubMed  Google Scholar 

  54. Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J. Mol. Liq. 277, 646–648 (2019). https://doi.org/10.1016/j.molliq.2019.01.005

    Article  CAS  Google Scholar 

  55. H. Bai, J. Chen, Z. Wang, E. Lamy, Simultaneous removal of organic dyes from aqueous aolutions by renewable alginate hybridized with graphene oxide. J. Chem. Eng. Data 65, 4443–4451 (2020). https://doi.org/10.1021/acs.jced.0c00277

    Article  CAS  Google Scholar 

  56. S.S. Vieira, Z.M. Magriotis, N.A.V. Santos, M. das Gracas Cardoso, A.A. Saczk, Macauba palm (Acrocomia aculeata) cake from biodiesel processing: an efficient and low cost substrate for the adsorption of dyes. Chem. Eng. J. 183, 152–161 (2012). https://doi.org/10.1016/j.cej.2011.12.047

    Article  CAS  Google Scholar 

  57. X. Jiang, J. Xue, Y. Zhang, Z. Xiong, L. Zhao, Facile synthesis of DTC-Chm-GO nanocomposite with remarkable adsorption capacity and antibacterial activity. Mater. Sci. Eng. B 275, 115517 (2022). https://doi.org/10.1016/j.mseb.2021.115517

    Article  CAS  Google Scholar 

  58. C.B. Godiya, L.A.M. Ruotolo, W. Cai, Functional biobased hydrogels for the removal of aqueous hazardous pollutants: current status, challenges, and future perspectives. J. Mater. Chem. A 8, 21585–21612 (2020). https://doi.org/10.1039/D0TA07028A

    Article  CAS  Google Scholar 

  59. H.M. Manohara, S.S. Nayak, G. Franklin, S.K. Nataraj, D. Mondal, Progress in marine derived renewable functional materials and biochar for sustainable water purification. Green Chem. 23, 8305–8331 (2021). https://doi.org/10.1039/D1GC03054J

    Article  CAS  Google Scholar 

  60. N. Bagotia, A.K. Sharma, S. Kumar, A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 268, 129309 (2021). https://doi.org/10.1016/j.chemosphere.2020.129309

    Article  CAS  PubMed  Google Scholar 

  61. S. Yadav, A. Yadav, N. Bagotia, A.K. Sharma, S. Kumar, Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater-a review. J. Water Process Eng. 42, 102148 (2021). https://doi.org/10.1016/j.jwpe.2021.102148

    Article  Google Scholar 

  62. M. Bilal, I. Ihsanullah, M.U.H. Shah, A.V.B. Reddy, T.M. Aminabhavi, Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J. Environ. Manag. 321, 115981 (2022). https://doi.org/10.1016/j.jenvman.2022.115981

    Article  CAS  Google Scholar 

  63. K. Manzoor, M. Batool, F. Naz, M.F. Nazar, B.H. Hameed, M.N. Zafar, A comprehensive review on application of plant-based bioadsorbents for congo red removal. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02741-5

    Article  Google Scholar 

  64. C.Y. Soon, N.A. Rahman, Y.B. Tee, R.A. Talib, C.H. Tan, K. Abdan, E.W.C. Chan, Electrospun biocomposite: Nanocellulose and chitosan entrapped within a poly (hydroxyalkanoate) matrix for congo red removal. J. Mater. Res. Technol. 8, 5091–5102 (2019). https://doi.org/10.1016/j.jmrt.2019.08.030

    Article  CAS  Google Scholar 

  65. L. Chen, Y. Dai, Q. Lu, C. Fang, Z. Wang, Y. Li, L. Cai, B. Liu, Y. Zhang, Y. Li, L. Wan, Fabrication of magnetic targeted cellulose/poly (acrylic acid-co-2-methacryloyloxyethyl trimethylammonium chloride) composites for adsorbing congo red dye from aqueous solution. J. Mater. Sci-Mater. El. 33, 5750–5762 (2022). https://doi.org/10.1007/s10854-022-07760-6

    Article  CAS  Google Scholar 

  66. J.N. Putro, S.P. Santoso, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal. Environ. Nanotechnol. Monit. Manag. 12, 100260 (2019). https://doi.org/10.1016/j.enmm.2019.100260

    Article  Google Scholar 

  67. M.H. Beyki, M. Bayat, F. Shemirani, Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of congo red dye. Bioresour. Technol. 218, 326–334 (2016). https://doi.org/10.1016/j.biortech.2016.06.069

    Article  CAS  PubMed  Google Scholar 

  68. T. Shahnaz, V.C. Padmanaban, S. Narayanasamy, Surface modification of nanocellulose using polypyrrole for the adsorptive removal of congo red dye and chromium in binary mixture. Int. J. Biol Macromol 151, 322–332 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.181

    Article  CAS  PubMed  Google Scholar 

  69. N. Salahuddin, M.A. Abdelwahab, A. Akelah, M. Elnagar, Adsorption of congo red and crystal violet dyes onto cellulose extracted from egyptian water hyacinth. Nat. Hazards 105, 1375–1394 (2021). https://doi.org/10.1007/s11069-020-04358-1

    Article  Google Scholar 

  70. X. Huang, P. Hadi, R. Joshi, A.G. Alhamzani, B.S. Hsiao, A comparative study of mechanism and performance of anionic and cationic dialdehyde nanocelluloses for dye adsorption and separation. ACS Omega 8, 8634–8649 (2023). https://doi.org/10.1021/acsomega.2c07839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (32271822), Natural Science Foundation of Henan Province (222300420432) and SRTP Program, Henan University of Science and Technology (2022186).

Author information

Authors and Affiliations

Authors

Contributions

Literature search and data analysis were performed by all of the authors. Writing the first draft was performed by A.R. Xu and other authors. §Y. Hui and R.K. Liu contributed equally to this work.

Corresponding authors

Correspondence to Airong Xu or Sisi Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Y., Liu, R., Li, L. et al. Magnetic hydroxyethyl cellulose spheres with efficient congo red removal. J Porous Mater 30, 1735–1751 (2023). https://doi.org/10.1007/s10934-023-01458-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01458-8

Keywords

Navigation