Skip to main content

Advertisement

Log in

Porosity control of CNT aerogel and its conversion to CNT fiber in floating catalyst chemical vapour deposition

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Carbon nanotube aerogel (CNT aerogel), a self-assembled 3D structure of long CNTs, has gained attraction as the exotic properties of individual CNTs can be potentially translated into the macro dimension through this structure. The present work reports how S/Fe ratio in the feedstock controls the density and pore-structure of the self-assembled CNT aerogel in floating catalyst chemical vapor deposition (FC-CVD). The density of the aerogel increases with the decrease in the S/Fe ratio. Small-angle scattering (SAS) and scanning electron microscopy (SEM) suggest the decrease in porosity and increase in bundle dimensions with the decrease in S/Fe ratio. Raman spectroscopy and transmission electron microscopy (TEM) depict that the CNTs are multi-walled in nature at the processing conditions employed, and the crystallinity improves with an increase in the S/Fe ratio. Early re-nucleation and increase in nucleation density of catalysts with a higher S/Fe ratio have been proposed to produce CNT aerogel with lesser density. The formed aerogels were converted into CNT fibers and a maximum electrical conductivity of 1.02 ± 0.19 M Sm−1 and tensile strength of 308.56 ± 24.6 MPa were obtained with S/Fe ratio of 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. S. Reich, C. Thomsen, J. Maultzsch, Carbon nanotubes: basic concepts and physical properties (John Wiley & Sons, Weinheim, 2008)

    Google Scholar 

  2. S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley, P.C. Eklund, Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 101(44), 8839–8842 (1997)

    Article  CAS  Google Scholar 

  3. J.Y. Oh, S.J. Yang, J.Y. Park, T. Kim, K. Lee, Y.S. Kim, H.N. Han, C.R. Park, Easy preparation of self-assembled high-density Bucky paper with enhanced mechanical properties. Nano. Lett. 15(1), 190–197 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Li, J. Xu, J.P. O’Byrne, L. Chen, K. Wang, M.A. Morris, J.D. Holmes, Freestanding bucky paper with high strength from multi-wall carbon nanotubes. Mater. Chem. Phys. 135(2), 921–927 (2012)

    Article  CAS  Google Scholar 

  5. Z. Lin, Z. Zeng, X. Gui, Z. Tang, M. Zou, A. Cao, Carbon nanotube sponges, aerogels, and hierarchical composites: synthesis, properties, and energy applications. Adv. Energy Mater. 6(17), 1600554 (2016)

    Article  Google Scholar 

  6. Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. F. Smail, A. Boies, A. Windle, Direct spinning of CNT fibres: Past, present and future scale up. Carbon 152, 218–232 (2019)

    Article  CAS  Google Scholar 

  8. M.D. Yadav, K. Dasgupta, A.W. Patwardhan, J.B. Joshi, High performance fibers from carbon nanotubes: synthesis, characterization, and applications in composites—a review. Ind. Eng. Chem. Res. 56(44), 12407–12437 (2017)

    Article  CAS  Google Scholar 

  9. M.B. Bryning, D.E. Milkie, M.F. Islam, L.A. Hough, J.M. Kikkawa, A.G. Yodh, Carbon nanotube aerogels. Adv. Mater. 19(5), 661–664 (2007)

    Article  CAS  Google Scholar 

  10. K.L. Van Aken, C.R. Pérez, Y. Oh, M. Beidaghi, Y. Joo Jeong, M.F. Islam, Y. Gogotsi, High rate capacitive performance of single-walled carbon nanotube aerogels. Nano. Energy 15, 662–669 (2015)

    Article  Google Scholar 

  11. L. Weller, F.R. Smail, J.A. Elliott, A.H. Windle, A.M. Boies, S. Hochgreb, Mapping the parameter space for direct-spun carbon nanotube aerogels. Carbon 146, 789–812 (2019)

    Article  CAS  Google Scholar 

  12. T.S. Gspann, F.R. Smail, A.H. Windle, Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of sulphur. Faraday Discuss. 173(0), 47–65 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. C. Hoecker, F. Smail, M. Pick, L. Weller, A.M. Boies, The dependence of CNT aerogel synthesis on sulfur-driven catalyst nucleation processes and a critical catalyst particle mass concentration. Sci. Rep. 7(1), 14519 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  14. A. Karaeva, M. Khaskov, E. Mitberg, B. Kulnitskiy, I. Perezhogin, L. Ivanov, V. Denisov, A. Kirichenko, V. Mordkovich, Longer carbon nanotubes by controlled catalytic growth in the presence of water vapor. Fuller. Nanotubes Carbon Nanostruct. 20(4–7), 411–418 (2012)

    Article  CAS  Google Scholar 

  15. A.R. Karaeva, S.A. Urvanov, N.V. Kazennov, E.B. Mitberg, V.Z. Mordkovich, Synthesis, structure and electrical resistivity of carbon nanotubes synthesized over group VIII metallocenes. Nanomaterials 10(11), 2279 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. V. Reguero, B. Alemán, B. Mas, J.J. Vilatela, Controlling carbon nanotube type in macroscopic fibers synthesized by the direct spinning process. Chem. Mater. 26(11), 3550–3557 (2014)

    Article  CAS  Google Scholar 

  17. Y. Jung, J. Song, W. Huh, D. Cho, Y. Jeong, Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chem. Eng. J. 228, 1050–1056 (2013)

    Article  CAS  Google Scholar 

  18. A. Kaniyoor, J. Bulmer, T. Gspann, J. Mizen, J. Ryley, P. Kiley, J. Terrones, C. Miranda-Reyes, G. Divitini, M. Sparkes, B. O’Neill, A. Windle, J.A. Elliott, High throughput production of single-wall carbon nanotube fibres independent of sulfur-source. Nanoscale 11(39), 18483–18495 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. S. Mazumder, D. Sen, T. Saravanan, P.R. Vijayaraghavan, A medium resolution double crystal based small-angle neutron scattering instrument at Trombay. Curr. Sci. 81(3), 257–262 (2001)

    CAS  Google Scholar 

  20. G. Hou, R. Su, A. Wang, V. Ng, W. Li, Y. Song, L. Zhang, M. Sundaram, V. Shanov, D. Mast, D. Lashmore, M. Schulz, Y. Liu, The effect of a convection vortex on sock formation in the floating catalyst method for carbon nanotube synthesis. Carbon 102, 513–519 (2016)

    Article  CAS  Google Scholar 

  21. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)

    Article  Google Scholar 

  22. R. Saito, A. Jorio, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Chirality-dependent G-band Raman intensity of carbon nanotubes. Phys. Rev. B 64(8), 085312 (2001)

    Article  Google Scholar 

  23. S.-H. Lee, J. Park, H.-R. Kim, J. Lee, K.-H. Lee, Synthesis of high-quality carbon nanotube fibers by controlling the effects of sulfur on the catalyst agglomeration during the direct spinning process. RSC Adv. 5(52), 41894–41900 (2015)

    Article  CAS  Google Scholar 

  24. M.S. Shamsudin, N.A. Asli, S. Abdullah, S.Y.S. Yahya, M. Rusop, Effect of synthesis temperature on the growth iron-filled carbon nanotubes as evidenced by structural, micro-Raman, and thermogravimetric analyses. Adv. Condens. Matter Phys. 2012, 420619 (2012)

    Article  Google Scholar 

  25. A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, M.J. Heben, A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 11(16), 1354–1358 (1999)

    Article  CAS  Google Scholar 

  26. S. Osswald, M. Havel, Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38(6), 728–736 (2007)

    Article  CAS  Google Scholar 

  27. P.G. Collins, Defects and disorder in carbon nanotubes, in Oxford handbook of nanoscience and technology: materials: structures, properties and Characterization, techniques. (Oxford University Press, Oxford, 2010)

    Google Scholar 

  28. R.A. Moraes, C.F. Matos, E.G. Castro, W.H. Schreiner, M.M. Oliveira, A.J. Zarbin, The effect of different chemical treatments on the structure and stability of aqueous dispersion of iron-and iron oxide-filled multi-walled carbon nanotubes. J. Braz. Chem. Soc. 22(11), 2191–2201 (2011)

    Article  CAS  Google Scholar 

  29. C. Santos, E. Senokos, J.C. Fernández-Toribio, Á Ridruejo, R. Marcilla, J.J. Vilatela, Pore structure and electrochemical properties of CNT-based electrodes studied by in situ small/wide angle X-ray scattering. J. Mater. Chem. A 7(10), 5305–5314 (2019)

    Article  CAS  Google Scholar 

  30. H. Yue, V. Reguero, E. Senokos, A. Monreal-Bernal, B. Mas, J.P. Fernández-Blázquez, R. Marcilla, J.J. Vilatela, Fractal carbon nanotube fibers with mesoporous crystalline structure. Carbon 122, 47–53 (2017)

    Article  CAS  Google Scholar 

  31. S.V.G. Menon, C. Manohar, K.S. Rao, A new interpretation of the sticky hard sphere model. J. Chem. Phys. 95(12), 9186–9190 (1991)

    Article  CAS  Google Scholar 

  32. J. Teixeira, Small-angle scattering by fractal systems. J. Appl. Crystallogr. 21(6), 781–785 (1988)

    Article  Google Scholar 

  33. A. Guinier, G. Fournet, K.L. Yudowitch, Small-angle scattering of X-rays (Wiley, London, 1955)

    Google Scholar 

  34. A. Sharma, D. Sen, S. Thakre, G. Kumaraswamy, Characterizing microvoids in regenerated cellulose fibers obtained from viscose and lyocell processes. Macromolecules 52(11), 3987–3994 (2019)

    Article  CAS  Google Scholar 

  35. C.J. Jafta, A. Petzold, S. Risse, D. Clemens, D. Wallacher, G. Goerigk, M. Ballauff, Correlating pore size and shape to local disorder in microporous carbon: a combined small angle neutron and X-ray scattering study. Carbon 123, 440–447 (2017)

    Article  CAS  Google Scholar 

  36. D. Sen, K. Dasgupta, J. Bahadur, S. Mazumder, D. Sathiyamoorthy, Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: a small angle neutron scattering investigation. Pramana 71(5), 971–977 (2008)

    Article  CAS  Google Scholar 

  37. R.M. Sundaram, K.K.K. Koziol, A.H. Windle, Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv. Mater. 23(43), 5064–5068 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. H. Ming, D. Peiling, Z. Yunlong, G. Jing, R. Xiaoxue, Effect of reaction temperature on carbon yield and morphology of CNTs on copper loaded nickel nanoparticles. J. Nanomater. 2016, 8106845 (2016)

    Article  Google Scholar 

  39. B. Alemán, V. Reguero, B. Mas, J.J. Vilatela, Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning. ACS Nano. 9(7), 7392–7398 (2015)

    Article  PubMed  Google Scholar 

  40. A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, K. Koziol, Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24(24), 3661–3682 (2014)

    Article  CAS  Google Scholar 

  41. J. Wang, X. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 5(1), 1–8 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. S. A. Thakur and Ms. Poonam Suradkar for assisting in sample preparation and furnace operation. The authors are thankful to Dr. Manishkumar Yadav, Institute of Chemical Technology, Mumbai and SAIF, IIT Bombay for the TEM. This research was funded by Bhabha Atomic Research Centre, Mumbai, India.

Funding

This research was funded by Bhabha Atomic Research Centre, Mumbai, India.

Author information

Authors and Affiliations

Authors

Contributions

RA: Methodology, Formal analysis, Investigation, Writing - Original Draft. AK: Investigation, Resources. JP: Formal analysis, Investigation, Writing - Review & Editing. PTR: Investigation, Resources. DS: Investigation, Resources. KD: Writing - Review & Editing, Supervision, Project administration.

Corresponding author

Correspondence to Kinshuk Dasgupta.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, R., Kaushal, A., Prakash, J. et al. Porosity control of CNT aerogel and its conversion to CNT fiber in floating catalyst chemical vapour deposition. J Porous Mater 30, 507–520 (2023). https://doi.org/10.1007/s10934-022-01358-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01358-3

Keywords

Navigation