Skip to main content
Log in

Porous silica modification with sulfuric acids and potassium fluorides as catalysts for biodiesel conversion from waste cooking oils

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Acid and base catalysts have been successfully synthesized, characterized, and applied. This research aimed to synthesize catalysts for biodiesel conversion from waste cooking oil. Acid catalyst (SO4/SiO2) was used to reduce the free fatty acid (FFA) from feedstock and base catalyst (KF/SiO2) was used to convert the oil into biodiesel. The catalyst was prepared using tetraethyl orthosilicate (TEOS) as a silica precursor. The heating source employed the conventional and microwave heating method. The microwave-assisted presented more efficient and reduced reaction time by up to 50% and showed a larger surface area of 556.4 m2/g. Porous silica was treated by the addition of sulfuric acids (H2SO4) as acid agents and potassium fluoride (KF) as base agents with various concentrations of 0.5; 1.0; 1.5; and 2.0 M. These catalysts were varied in calcination temperature at 450, 500, 550, and 600 °C. The catalysts were analyzed and characterized by acidity and basicity analysis, FTIR, XRD, SEM–EDX, and SAA. The SO4/SiO2 2.0–550 exhibited the highest acidity which was 0.97 mEq KOH/g. This catalyst was able to reduce the FFA content from 3.6% to 1.62% with 5% of catalyst weight, 1:23 ratio mol oil to methanol, and 60 min of reaction time. The optimum basicity was achieved by KF/SiO2 2.0–550 with the basicity of 1.64 mmol HCl/g and proved that KF/SiO2 2.0–550 had catalytic activity in biodiesel conversion. This catalyst was applied to convert the esterified WCO in the transesterification step. The biodiesel was analyzed using GCMS and obtained up to 54.13% of methyl ester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.M.S. Faba, G.O. Ferrero, J.M. Dias, G.A. Eimer, Mol. Catal. 481, 1 (2020)

    Google Scholar 

  2. R.V. Quah, Y.H. Tan, N.M. Mubarak, M. Khalid, E.C. Abdullah, C. Nolasco-Hipolito, J. Environ. Chem. Eng. 7, 103219 (2019)

    Article  CAS  Google Scholar 

  3. S. Dehghani, M. Haghighi, Waste and Biomass Valorization 11, 4167 (2020)

    Article  CAS  Google Scholar 

  4. O. Sahu, Fuel 287, 119543 (2021)

    Article  CAS  Google Scholar 

  5. A. Ramesh, K. Palanichamy, P. Tamizhdurai, S. Umasankar, K. Sureshkumar, K. Shanthi, Mater. Lett. 238, 62 (2019)

    Article  CAS  Google Scholar 

  6. M.D.M. Innocentini, R.F. Botti, P.M. Bassi, C.F.P.R. Paschoalato, D.L. Flumignan, G. Franchin, P. Colombo, Ceram. Int. 45, 1443 (2019)

    Article  CAS  Google Scholar 

  7. Y.T. Wang, Z. Fang, F. Zhang, Catal. Today 319, 172 (2019)

    Article  CAS  Google Scholar 

  8. I.B. Laskar, K. Rajkumari, R. Gupta, S. Chatterjee, B. Paul, L. Rokhum, RSC Adv. 8, 20131 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. Du, Z. Li, S. Ding, C. Chen, S. Qu, W. Yi, J. Lu, J. Ding, Fuel 258, 116122 (2019)

    Article  CAS  Google Scholar 

  10. P. Andreo-Martínez, N. García-Martínez, M. del Durán-del-Amor, J. Quesada-Medina, Energy Convers. Manag. 173, 187 (2018)

    Article  CAS  Google Scholar 

  11. D. Srinivas, J.K. Satyarthi, Catal. Surv. from. Asia 15, 145 (2011)

    CAS  Google Scholar 

  12. R.D. Souza, T. Vats, A. Chattree, P.F. Siril, Catal. Letters 148, 2848 (2018)

    Article  CAS  Google Scholar 

  13. D. Singh, D. Sharma, S.L. Soni, S. Sharma, P.K. Sharma, A. Jhalani, Fuel 262, 116553 (2020)

    Article  CAS  Google Scholar 

  14. T. Liu, Y. Liu, S. Wu, J. Xue, Y. Wu, Y. Li, X. Kang, J. Clean. Prod. 204, 636 (2018)

    Article  Google Scholar 

  15. D.W. Lee, K.Y. Lee, Catal. Surv. from. Asia 18, 55 (2014)

    CAS  Google Scholar 

  16. Y. Wu, S. Liao, Front. Chem. Eng. China 3, 330 (2009)

    Article  CAS  Google Scholar 

  17. A. Aneu, K. Wijaya, A. Syoufian, SILICON 13, 2265 (2021)

    Article  CAS  Google Scholar 

  18. N.S. Lani, N. Ngadi, N.Y. Yahya, R.A. Rahman, J. Clean. Prod. 146, 116 (2017)

    Article  CAS  Google Scholar 

  19. N.S. Lani, N. Ngadi, I.M. Inuwa, Renew. Energy 156, 1266 (2020)

    Article  CAS  Google Scholar 

  20. J.M. da Costa, L.R.P.A. de Lima, Fuel 293, 120446 (2021)

    Article  CAS  Google Scholar 

  21. S.E. Mahesh, A. Ramanathan, K.M.M.S. Begum, A. Narayanan, Energy Convers. Manag. 91, 442 (2015)

    Article  CAS  Google Scholar 

  22. C. Murugan, H.C. Bajaj, Fuel Process. Technol. 92, 77 (2011)

    Article  CAS  Google Scholar 

  23. L. Gao, S. Wang, W. Xu, G. Xiao, Appl. Energy 146, 196 (2015)

    Article  CAS  Google Scholar 

  24. J.A. Xuan, X. Zheng, H. Hu, Catal. Commun. 28, 124 (2012)

    Article  CAS  Google Scholar 

  25. L.C.A. Silva, E.A. Silva, M.R. Monteiro, C. Silva, J.G. Teleken, H.J. Alves, Appl. Clay Sci. 102, 121 (2014)

    Article  CAS  Google Scholar 

  26. H.J. Alves, A.M. da Rocha, M.R. Monteiro, C. Moretti, M.D. Cabrelon, C.A. Schwengber, M.C. Milinsk, Appl. Clay Sci. 91–92, 98 (2014)

    Article  CAS  Google Scholar 

  27. A. Islam, Y.H. Taufiq-Yap, C.M. Chu, P. Ravindra, E.S. Chan, Renew. Energy 59, 23 (2013)

    Article  CAS  Google Scholar 

  28. V. Raju, R. Radhakrishnan, S. Jaenicke, G.K. Chuah, Catal. Today 164, 139 (2011)

    Article  CAS  Google Scholar 

  29. X. Ye, W. Wang, X. Zhao, T. Wen, Y. Li, Z. Ma, L. Wen, J. Ye, Y. Wang, Catal. Commun. 116, 72 (2018)

    Article  CAS  Google Scholar 

  30. Y.J. Zhu, F. Chen, Chem. Rev. 114, 6462 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. K.M. Garadkar, A.N. Kadam, J. Park, Handbook of Sol-Gel Sci. Technol. Process. Charact. Appl. 483, 483–504 (2018)

    Article  Google Scholar 

  32. L. Predoana, I. Stanciu, M. Anastasescu, J.M. Calderon-Moreno, M. Stoica, S. Preda, M. Gartner, M. Zaharescu, J. Sol-Gel Sci. Technol. 78, 589 (2016)

    Article  CAS  Google Scholar 

  33. I. Fatimah, S.P. Yudha, Energy Procedia 105, 1796 (2017)

    Article  CAS  Google Scholar 

  34. M. Utami, K. Wijaya, W. Trisunaryanti, Key Eng. Mater. 757, 131 (2017)

    Article  Google Scholar 

  35. K.B. Ghoreishi, N. Asim, M.A. Yarmo, M.W. Samsudin, Chem. Pap. 68, 1194 (2014)

    Article  CAS  Google Scholar 

  36. N. R. E. Radwan, M. Hagar, T. H. Afifi, F. Al-wadaani, and R. M. Okasha, (2018).

  37. S. Lou, L. Jia, X. Guo, P. Wu, L. Gao, J. Wang, Springerplus 4, 1 (2015)

    Article  CAS  Google Scholar 

  38. M.V. Khedkar, S.B. Somvanshi, A.V. Humbe, K.M. Jadhav, J. Non. Cryst. Solids 511, 140 (2019)

    Article  CAS  Google Scholar 

  39. N.R.E. Radwan, M. Hagar, T.H. Afifi, F. Al-Wadaani, R.M. Okasha, Catalysts 8(1), 36 (2018)

    Article  CAS  Google Scholar 

  40. A. Patel, V. Brahmkhatri, N. Singh, Renew. Energy 51, 227 (2013)

    Article  CAS  Google Scholar 

  41. Y. Zhang, J. Li, B. Li, Z. Li, Y. He, Z. Qin, and R. Gao, Bioenergy Res. (2021).

  42. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  43. E. H. Alsharaeh, T. Bora, A. Soliman, F. Ahmed, G. Bharath, M. G. Ghoniem, K. M. Abu-salah, and J. Dutta, 1 (2017).

  44. R.M. Mohamed, E.S. Aazam, Int. J. Photoenergy 2012, 1–9 (2012)

    Google Scholar 

  45. M. Utami, W. Trisunaryanti, K. Shida, M. Tsushida, H. Kawakita, K. Ohto, K. Wijaya, M. Tominaga, RSC Adv. 9, 41392 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M.F. Elkady, A. Zaatout, O. Balbaa, J. Chem. 2015, 1–9 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Ministry of Research, Technology, and Higher Education of Republic Indonesia through PMDSU Batch IV Research Grant with contract number 2340/UN1/DITLIT/DIT-LIT/PT/2021 and Enhancing International Publication (EIP) Program 2021. The authors are also grateful for the helpful discussions and feedback from Dr. Justin M. Chalker from the Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia as part of Enhancing International Publication (EIP) Program.

Funding

PMDSU Batch IV Research Grant with contract number 2340/UN1/DITLIT/DIT-LIT/PT/2021 from Ministry of Research, Technology, and Higher Education of Republic Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Aneu: writing manuscript, laboratorium activity, data analysis. Karna Wijaya: design research, resources, conceptualization, supervision. Akhmad Syoufian: data analysis, supervision, validation.

Corresponding author

Correspondence to Karna Wijaya.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aneu, A., Wijaya, K. & Syoufian, A. Porous silica modification with sulfuric acids and potassium fluorides as catalysts for biodiesel conversion from waste cooking oils. J Porous Mater 29, 1321–1335 (2022). https://doi.org/10.1007/s10934-022-01258-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01258-6

Keywords

Navigation