Skip to main content
Log in

Zinc Modified Hierarchical ZSM-5 for Aromatisation of Propane

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hierarchical H/ZnZSM-5 was synthesised and tested to study the effect of modifying the catalyst with Zn in the aromatisation of propane using a fixed bed microreactor. Characterisation of the samples was done with FTIR, Raman spectroscopy, XRF, XRD, BET, N2 adsorption study and TEM. Based on the XRD and BET results, synthesised hierarchical H/ZnZSM-5 with 2 % zinc loading was the best, with a percentage crystallinity of 85.4 % and surface area of 405.97 m2/g, and hierarchy factor of 0.14. TEM results showed the mesoporous nature of the synthesised catalyst, and the peak at the Raman shift of 1645 cm− 1 confirmed the modification with Zn. Propane aromatisation performance evaluation of the synthesised catalyst samples was done in a fixed bed reactor, and the products were analysed with the aid of online gas chromatography (GC). The results showed that conversion was not significantly altered with increasing zinc loading. In contrast, selectivity of aromatics increased with an increase in zinc loading, reaching a maximum of about 62.7 % for 2 % zinc loading and dropping to 42.4 % for 3 % loading of zinc. The characterisation and performance test results indicated that 2 % zinc loading is the best catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Q. Zhang, G. Liu, L. Wang, X. Zhang, G. Li, Energy Fuels 28, 4431–4439 (2014)

    Article  CAS  Google Scholar 

  2. E.Y. Emori, F.H. Hirashima, C.H. Zandonai, C.A. Ortiz-bravo, N.R.C. Fernandes-machado, M.H.N. Olsen-scaliante, Catal. Today (2016). https://doi.org/10.1016/j.cattod.2016.05.052

    Article  Google Scholar 

  3. W. Li, G. Li, C. Jin, X. Liu, J. Wangb, J. Mater. Chem. A (2015). https://doi.org/10.1039/C5TA02662H

    Article  Google Scholar 

  4. A. Aziz, K.S. Kim, J. Porous Mater. 22, 1401–1406 (2015). https://doi.org/10.1007/s10934-015-0019-5

    Article  CAS  Google Scholar 

  5. D. Xu, G.R. Swindlehurst, H. Wu, D.H. Olson, X. Zhang, M. Tsapatsis, Adv. Funct. Material 24, 201–208 (2014). https://doi.org/10.1002/adfm.201301975

    Article  CAS  Google Scholar 

  6. Y. Ji, H. Yang, W. Yan, Catalysts 7, 367 (2017). https://doi.org/10.3390/catal7120367

    Article  CAS  Google Scholar 

  7. Y. Yue, Y. Kang, Y. Bai, L. Gu, H. Liu, J. Bao, T. Wang, Appl. Clay Sci. 158, 177–185 (2018). https://doi.org/10.1016/j.clay.2018.03.025

    Article  CAS  Google Scholar 

  8. W. Chiang, E. Fratini, P. Baglioni, D. Georgi, J. Chen, Y. Liu, J. Phys. Chem. C 120, 4354–4363 (2016). https://doi.org/10.1021/acs.jpcc.5b10688

    Article  CAS  Google Scholar 

  9. V. Hoang, Q. Huang, M. Eic, S. Kaliaguine, Langmuir (2005) 2051–2057

  10. P. Linton, V. Alfredsson, Growth and Morphology of Mesoporous SBA-15 Particles. Chem. Mater. 20, 2878–2880 (2008)

    Article  CAS  Google Scholar 

  11. L. Xu, F. Wang, Z. Feng, Z. Liu, J. Guan, Catalysts 9, 1–12 (2019). https://doi.org/10.3390/catal9020202

    Article  CAS  Google Scholar 

  12. J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Pørez-ramírez, Chem. Eur. J. 11, 4983–4994 (2005). https://doi.org/10.1002/chem.200500045

    Article  CAS  PubMed  Google Scholar 

  13. J. Pe´rez-Ramı´rez, D. Verboekend, A. Bonilla, S. Abello, Adv. Funct. Matererial 19, 3972–3979 (2009). https://doi.org/10.1002/adfm.200901394

    Article  CAS  Google Scholar 

  14. I.B. Dauda, M. Yusuf, S. Gbadamasi, M. Bello, A.Y. Atta, B.O. Aderemi, B.Y. Jibril, Am. Chem. Soc. Omega 5, 2725–2733 (2020). https://doi.org/10.1021/acsomega.9b03343

    Article  CAS  Google Scholar 

  15. S. Van Donk, A.H. Janssen, J.H. Bitter, K.P. De Jong, Catal. Rev. 45, 297–319 (2003)

    Article  Google Scholar 

  16. M.E. Davis, Nature 417, 813–821 (2002)

    Article  CAS  Google Scholar 

  17. C.H. Christensen, I. Schmidt, A. Carlsson, K. Johannsen, K. Herbst, J. Am. Chem. Soc. 127, 8098–8102 (2005)

    Article  CAS  Google Scholar 

  18. K. Egeblad, C.H. Christensen, M. Kustova, C.H. Christensen, Chem. Mater. 20, 946–960 (2008)

    Article  CAS  Google Scholar 

  19. F.V. Barsi, D. Cardoso, Brazillian J. Chem. Eng. 26, 353–360 (2009)

    Article  CAS  Google Scholar 

  20. H. Coqueblin, A. Richard, D. Uzio, L. Pinard, Y. Pouilloux, F. Epron, Catal. Today 289, 62–69 (2016)

    Article  Google Scholar 

  21. G.G. Oseke, A.Y. Atta, B. Mukhtar, B. Yakubu, B.O. Aderemi, Appl. Petrochemical Res. 10, 55–65 (2020). https://doi.org/10.1007/s13203-020-00245-9

    Article  CAS  Google Scholar 

  22. D. Gao, Y. Zhi, L. Cao, L. Zhao, J. Gao, P. Hao, Chinese J Chem Eng (2022)

  23. D. Liu, L. Cao, G. Zhang, L. Zhao, J. Gao, C. Xu, Fuel Process. Technol. 216, 1–16 (2021)

    CAS  Google Scholar 

  24. C.T. Brigden, C.D. Williams, D. Apperley, Inorg. Mater. 43, 758–769 (2007). https://doi.org/10.1134/S0020168507070175

    Article  CAS  Google Scholar 

  25. A. Bhan, W.Nicholas Delgass, Catal. Rev. 50, 19–151 (2008). https://doi.org/10.1080/01614940701804745

    Article  CAS  Google Scholar 

  26. L.M. Lubango, M.S. Scurrell, Appl. Catal. A 235, 265–272 (2002)

    Article  CAS  Google Scholar 

  27. J. Garcia, M. Johnson, J. Valla, J.Y. Ying, Catal. Sci. Technol. 2, 987–994 (2012). https://doi.org/10.1039/c2cy00309k

    Article  CAS  Google Scholar 

  28. N. Al-Yassir, M.N.N. Akhtar, K. Ogunronbi, S. Al-Khattaf, J. Mol. Catal. A Chem. 360, 1–15 (2012). https://doi.org/10.1016/j.molcata.2012.04.005

    Article  CAS  Google Scholar 

  29. L. Jin, S. Liu, T. Xie, Y. Wang, X. Guo, H. Hu, React. Kinet Mech. Catal. 113, 575–584 (2014). https://doi.org/10.1007/s11144-014-0743-x

    Article  CAS  Google Scholar 

  30. J. Perez-Ramırez, G. Mul, F. Kapteijn, J.A. Moulijn, A.R. Overweg, A. Domenech, A. Ribera, I.W.C.E. Arends§, J. Catal. 126, 113–126 (2002). https://doi.org/10.1006/jcat.2002.3511

    Article  CAS  Google Scholar 

  31. I. Ali, A. Hassan, S. Shabaan, K. El-nasser, Arab. J. Chem. 10, S2106–S2114 (2017). https://doi.org/10.1016/j.arabjc.2013.07.042

    Article  CAS  Google Scholar 

  32. T.E. Tshabalala, M.S. Scurrell, Catal. Commun. 72, 49–52 (2015). https://doi.org/10.1016/j.catcom.2015.06.022

    Article  CAS  Google Scholar 

  33. P.L. De Cola, R. Gla, J. Weitkamp, Appl. Catal. A Gen. 306, 85–97 (2006). https://doi.org/10.1016/j.apcata.2006.03.028

    Article  CAS  Google Scholar 

  34. G.G. Oseke, A.Y. Atta, B. Mukhtar, B.O. Aderemi, J. King Saud Univ. - Eng. Sci. (2020). https://doi.org/10.1016/j.jksues.2020.07.014

    Article  Google Scholar 

  35. D.P. Serrano, J. Aguado, G. Morales, J.M. Rodri, A. Peral, M. Thommes, J.D. Epping, B.F. Chmelka, Chem. Mater. 21, 641–654 (2009). https://doi.org/10.1021/cm801951a

    Article  CAS  Google Scholar 

  36. L.H. Chen, X.Y. Li, J.C. Rooke, Y.H. Zhang, X.Y. Yang, Y. Tang, F.S. Xiao, B.L. Su, J. Mater. Chem. 22, 17381–17403 (2012). https://doi.org/10.1039/c2jm31957h

    Article  CAS  Google Scholar 

  37. J. Liu, G. Jiang, Y. Liu, J. Di, Y. Wang, Z. Zhao, Q. Sun, C. Xu, J. Gao, A. Duan, J. Liu, Y. Wei, Y. Zhao, L. Jiang, Sci. Rep. 4, 7276 (2014). https://doi.org/10.1038/srep07276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. Feliczak-Guzik, Microporous Mesoporous Mater. 259, 33–45 (2017). https://doi.org/10.1016/j.micromeso.2017.09.030

    Article  CAS  Google Scholar 

  39. S.G. Bawa, A.S. Ahmed, P.C. Okonkwo, Niger J. Technol. 36, 822–828 (2017)

    Article  Google Scholar 

  40. Y. Zhu, Z. Hua, J. Zhou, L. Wang, J. Zhao, Y. Gong, W. Wu, M. Ruan, J. Shi, Chem. - A Eur. J. 17, 14618–14627 (2011). https://doi.org/10.1002/chem.201101401

    Article  CAS  Google Scholar 

  41. D. Verboekend, J. Pe´rez-Ramı´rez, Catal. Sci. Technol. 1, 879–890 (2011). https://doi.org/10.1039/c1cy00150g

    Article  CAS  Google Scholar 

  42. J. Zheng, Q. Zeng, Y. Yi, Y. Wang, J. Ma, B. Qin, X. Zhang, W. Sun, R. Li, Catal. Today 168, 124–132 (2011). https://doi.org/10.1016/j.cattod.2011.01.006

    Article  CAS  Google Scholar 

  43. P. Guo, N. Yan, L. Wang, X. Zou, Cryst. Growth Des. 17, 6821–6835 (2017)

    Article  CAS  Google Scholar 

  44. M.M.J. Treacy, J. Haggins, Collection of Simulated XRD Powder Patterns for Zeolites. 5, 279–280 (2007)

  45. K. Van Der Borght, V.V. Galvita, G.B. Marin, Appl. Catal. A Gen. 504, 621–630 (2015). https://doi.org/10.1016/j.apcata.2015.06.034

    Article  CAS  Google Scholar 

  46. Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, Microporous Mesoporous Mater. 143, 435–442 (2011). https://doi.org/10.1016/j.micromeso.2011.03.029

    Article  CAS  Google Scholar 

  47. J. Vernimmen, V. Meynen, S.J.F. Herregods, M. Mertens, O.I. Lebedev, G. Van Tendeloo, P. Cool, Eur. J. Inorg. Chem. 27, 4234–4240 (2011). https://doi.org/10.1002/ejic.201100268

    Article  CAS  Google Scholar 

  48. J. Ahmadpour, M. Taghizadeh, Synth. React. Inorg. Met. Nano-Metal Chem. 3174 (2015). https://doi.org/10.1080/15533174.2015.1004433

  49. K.E. Ogunronbi, N. Al-Yassir, S. Al-Khattaf, J. Mol. Catal. A Chem. 406, 1–18 (2015). https://doi.org/10.1016/j.molcata.2015.05.005

    Article  CAS  Google Scholar 

  50. C. Huang, Z. Ma, C. Miao, Y. Yue, W. Hua, Z. Gao, RSC Adv. 7, 4243–4252 (2017). https://doi.org/10.1039/C6RA25388A

    Article  CAS  Google Scholar 

  51. A. Palčić, M.S. Bartłomiej, M. Maja, Č Tomaž, A. Mariame, J. Krunoslav, Č Marija, M. Darko, V. Vitomir, V. Valentin, c M. Čargonja, F. f Darko Mekterović, V.V. and V. Valtchev, Inorg. Chem. Front. (2019). https://doi.org/10.1039/c9qi00433e

  52. Ö Attila, H.E. King, F. Meirer, B.M. Weckhuysen, Chem. - A Eur. J. 25, 7158–7167 (2019). https://doi.org/10.1002/chem.201805664

    Article  CAS  Google Scholar 

  53. K. Sun, F. Fan, H. Xia, Z. Feng, W. Li, C. Li, J. Phys. Chem. C 112, 16036–16041 (2008)

    Article  CAS  Google Scholar 

  54. M. Spangsberg, E. Taarning, K. Egeblad, C. Hviid, Catal. Today 168, 3–16 (2011). https://doi.org/10.1016/j.cattod.2011.01.007.

    Article  Google Scholar 

  55. S. Mitchell, A.B. Pinar, J. Kenvin, P. Crivelli, J. Kärger, J. Pérez-Ramírez, Nat. Commun. 6, 1–14 (2015). https://doi.org/10.1038/ncomms9633

    Article  CAS  Google Scholar 

  56. F.N. Gu, F. Wei, J.Y. Yang, N. Lin, W.G. Lin, Y. Wang, Chem. Mater. 22, 2442–2450 (2010). https://doi.org/10.1021/cm903785r

    Article  CAS  Google Scholar 

  57. R. Sabarish, G. Unnikrishnan, S. Nat, Appl. Sci. 1, 989 (2019). https://doi.org/10.1007/s42452-019-1036-9

    Article  CAS  Google Scholar 

  58. A. Petushkov, Synthesis, and Characterisation of Nanocrystalline and Mesoporous Zeolites (The University of Iowa, 2011)

  59. R.F. Egerton, Physical principles of electron microscopy (springer, 2005), https://doi.org/10.3934/dcds.2018221

  60. T. Ennaert, J. Van Aelst, J. Dijkmans, R. De Clercq, W. Schutyser, M. Dusselier, D. Verboekend, B.F. Sels, Chem. Soc. Rev. 45, 584–611 (2016). https://doi.org/10.1039/C5CS00859J

    Article  CAS  PubMed  Google Scholar 

  61. L.H. Janardhan, B.H. Anand, V.S. Ganapati, R. Sudarshan, V.C. Nettem, V.C.R. Peddy, S. Gandham, S. Gitesh, R. Ravishankar, 1 (2016) 2515–2521. https://doi.org/10.1002/slct.201600412

  62. X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Microporous Mesoporous Mater. 197, 252–261 (2014). https://doi.org/10.1016/j.micromeso.2014.06.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the sponsorship provided by Petroleum Technology Development Fund (PTDF), Abuja, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Atta.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

CRediT authorship contribution statement

B. O. Aderemi: Supervision, writing- review and editing. B. Y. Jibril: Supervision, writing- review and editing. B. Mukhtar: Supervision, writing- review and editing. A.S. Kovo: AS: Supervision, writing- review and editing. A. Y. Atta: Funding acquisition, Project Administration, Supervision, writing- review and editing. J T. Mamman: Development or design of methodology, the conduct of the experiment, Investment and writing-original draft.

Research data policy and data availability statements

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamman, J.T., Atta, A.Y., Mukhtar, B. et al. Zinc Modified Hierarchical ZSM-5 for Aromatisation of Propane. J Porous Mater 29, 1349–1362 (2022). https://doi.org/10.1007/s10934-022-01239-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01239-9

Keywords

Navigation